我用c++写了一个程序来寻找ab = C的所有解,其中a, b和C一起使用所有的数字0-9,只使用一次。程序循环遍历a和b的值,并每次对a、b和ab运行数字计数例程,以检查是否满足数字条件。

但是,当ab超出整数限制时,会产生伪解。我最终使用如下代码来检查这个:

unsigned long b, c, c_test;
...
c_test=c*b;         // Possible overflow
if (c_test/b != c) {/* There has been an overflow*/}
else c=c_test;      // No overflow

是否有更好的方法来测试溢出?我知道有些芯片有一个内部标志,在溢出发生时设置,但我从未见过通过C或c++访问它。


注意,有符号int溢出在C和c++中是未定义的行为,因此您必须在不实际引起它的情况下检测它。对于加法前的有符号整型溢出,请参见在C/ c++中检测有符号溢出。


当前回答

x86指令集包括一个无符号乘法指令,它将结果存储到两个寄存器中。要使用C中的指令,可以在64位程序(GCC)中编写以下代码:

unsigned long checked_imul(unsigned long a, unsigned long b) {
  unsigned __int128 res = (unsigned __int128)a * b;
  if ((unsigned long)(res >> 64))
    printf("overflow in integer multiply");
  return (unsigned long)res;
}

对于32位程序,需要使结果为64位,参数为32位。

另一种方法是使用依赖于编译器的intrinsic来检查标志寄存器。关于溢出的GCC文档可以从6.56内置函数执行溢出检查算术中找到。

其他回答

我看到你用的是无符号整数。根据定义,在C中(我不了解c++),无符号算术不会溢出…所以,至少对C来说,你的观点是没有意义的:)

对于有符号整数,一旦出现溢出,就会发生未定义行为(UB),程序可以做任何事情(例如:使测试不确定)。

#include <limits.h>

int a = <something>;
int x = <something>;
a += x;              /* UB */
if (a < 0) {         /* Unreliable test */
  /* ... */
}

要创建一个符合要求的程序,您需要在生成溢出之前测试溢出。该方法也可以用于无符号整数:

// For addition
#include <limits.h>

int a = <something>;
int x = <something>;
if (x > 0 && a > INT_MAX - x) // `a + x` would overflow
if (x < 0 && a < INT_MIN - x) // `a + x` would underflow

// For subtraction
#include <limits.h>
int a = <something>;
int x = <something>;
if (x < 0 && a > INT_MAX + x) // `a - x` would overflow
if (x > 0 && a < INT_MIN + x) // `a - x` would underflow

// For multiplication
#include <limits.h>

int a = <something>;
int x = <something>;
// There may be a need to check for -1 for two's complement machines.
// If one number is -1 and another is INT_MIN, multiplying them we get abs(INT_MIN) which is 1 higher than INT_MAX
if (a == -1 && x == INT_MIN) // `a * x` can overflow
if (x == -1 && a == INT_MIN) // `a * x` (or `a / x`) can overflow
// general case
if (x != 0 && a > INT_MAX / x) // `a * x` would overflow
if (x != 0 && a < INT_MIN / x) // `a * x` would underflow

对于除法(INT_MIN和-1特殊情况除外),不可能超过INT_MIN或INT_MAX。

从C23开始,标准头文件<stdckdint.h>提供了以下三个类函数宏:

bool ckd_add(type1 *result, type2 a, type3 b);
bool ckd_sub(type1 *result, type2 a, type3 b);
bool ckd_mul(type1 *result, type2 a, type3 b);

其中type1, type2和type3是任何整数类型。这些函数分别以任意精度对a和b进行加、减或乘,并将结果存储在*result中。如果结果不能由type1精确表示,则函数返回true("计算已溢出")。(任意精确是一种错觉;计算速度非常快,自20世纪90年代初以来几乎所有可用的硬件都可以在一个或两个指令内完成。)

重写OP的例子:

unsigned long b, c, c_test;
// ...
if (ckd_mul(&c_test, c, b))
{
    // returned non-zero: there has been an overflow
}
else
{
    c = c_test; // returned 0: no overflow
}

C_test包含所有情况下可能溢出的乘法结果。

早在C23之前,GCC 5+和Clang 3.8+就提供了以同样方式工作的内置程序,除了结果指针是最后传递而不是第一个传递:__builtin_add_overflow, __builtin_sub_overflow和__builtin_mul_overflow。这些也适用于小于int的类型。

unsigned long b, c, c_test;
// ...
if (__builtin_mul_overflow(c, b, &c_test))
{
    // returned non-zero: there has been an overflow
}
else
{
    c = c_test; // returned 0: no overflow
}

Clang 3.4+引入了具有固定类型的算术溢出内置函数,但它们的灵活性要低得多,而且Clang 3.8现在已经可用很长时间了。如果你需要使用__builtin_umull_overflow,尽管有更方便的更新选项。

Visual Studio的cl.exe没有直接的等价物。对于无符号加减法,包括<intrin.h>将允许您使用addcarry_uNN和subborrow_uNN(其中NN是位数,如addcarry_u8或subborrow_u64)。他们的签名有点迟钝:

unsigned char _addcarry_u32(unsigned char c_in, unsigned int src1, unsigned int src2, unsigned int *sum);
unsigned char _subborrow_u32(unsigned char b_in, unsigned int src1, unsigned int src2, unsigned int *diff);

C_in /b_in是输入的进位/借位标志,返回值是输出的进位/借位。它似乎没有符号运算或乘法的等价物。

另外,Clang for Windows现在已经可以投入生产(对于Chrome来说已经足够好了),所以这也是一个选择。

一些编译器提供了对CPU中整数溢出标志的访问,然后可以测试,但这不是标准的。

您还可以在执行乘法之前测试溢出的可能性:

if ( b > ULONG_MAX / a ) // a * b would overflow

如果您有一个比您想要测试的数据类型大的数据类型(比如您做了一个32位的添加,而您有一个64位的类型),那么这将检测是否发生溢出。我的例子是一个8位的添加。但它可以放大。

uint8_t x, y;    /* Give these values */
const uint16_t data16    = x + y;
const bool carry        = (data16 > 0xFF);
const bool overflow     = ((~(x ^ y)) & (x ^ data16) & 0x80);

它基于本页解释的概念:http://www.cs.umd.edu/class/spring2003/cmsc311/Notes/Comb/overflow.html

对于一个32位的例子,0xFF变成0xFFFFFFFF, 0x80变成0x80000000,最后uint16_t变成uint64_t。

注意:这捕获整数加法/减法溢出,我意识到你的问题涉及乘法。在这种情况下,分裂可能是最好的办法。这通常是calloc实现确保参数在相乘以获得最终大小时不会溢出的一种方式。

要以一种可移植的方式执行无符号乘法而不溢出,可以使用以下方法:

... /* begin multiplication */
unsigned multiplicand, multiplier, product, productHalf;
int zeroesMultiplicand, zeroesMultiplier;
zeroesMultiplicand = number_of_leading_zeroes( multiplicand );
zeroesMultiplier   = number_of_leading_zeroes( multiplier );
if( zeroesMultiplicand + zeroesMultiplier <= 30 ) goto overflow;
productHalf = multiplicand * ( c >> 1 );
if( (int)productHalf < 0 ) goto overflow;
product = productHalf * 2;
if( multiplier & 1 ){
   product += multiplicand;
   if( product < multiplicand ) goto overflow;
}
..../* continue code here where "product" is the correct product */
....
overflow: /* put overflow handling code here */

int number_of_leading_zeroes( unsigned value ){
   int ctZeroes;
   if( value == 0 ) return 32;
   ctZeroes = 1;
   if( ( value >> 16 ) == 0 ){ ctZeroes += 16; value = value << 16; }
   if( ( value >> 24 ) == 0 ){ ctZeroes +=  8; value = value <<  8; }
   if( ( value >> 28 ) == 0 ){ ctZeroes +=  4; value = value <<  4; }
   if( ( value >> 30 ) == 0 ){ ctZeroes +=  2; value = value <<  2; }
   ctZeroes -= x >> 31;
   return ctZeroes;
}