这是一个logistic sigmoid函数:

我知道x,现在如何用Python计算F(x) ?

设x = 0.458。

F(x) = ?


当前回答

使用numpy包允许sigmoid函数解析向量。

为了与Deeplearning相一致,我使用以下代码:

import numpy as np
def sigmoid(x):
    s = 1/(1+np.exp(-x))
    return s

其他回答

另一种方法是变换tanh函数

sigmoid = lambda x: .5 * (math.tanh(.5 * x) + 1)

@unwind的回答很好。然而,它不能处理极端负数(抛出OverflowError)。

我的改进:

def sigmoid(x):
    try:
        res = 1 / (1 + math.exp(-x))
    except OverflowError:
        res = 0.0
    return res

Tensorflow还包括一个sigmoid函数: https://www.tensorflow.org/versions/r1.2/api_docs/python/tf/sigmoid

import tensorflow as tf

sess = tf.InteractiveSession()
x = 0.458
y = tf.sigmoid(x)

u = y.eval()
print(u)
# 0.6125396

logistic s型函数的数值稳定版本。

    def sigmoid(x):
        pos_mask = (x >= 0)
        neg_mask = (x < 0)
        z = np.zeros_like(x,dtype=float)
        z[pos_mask] = np.exp(-x[pos_mask])
        z[neg_mask] = np.exp(x[neg_mask])
        top = np.ones_like(x,dtype=float)
        top[neg_mask] = z[neg_mask]
        return top / (1 + z)

使用pandas DataFrame/Series或numpy数组时的向量化方法:

上面的答案是用于单点计算的优化方法,但当你想将这些方法应用到pandas系列或numpy数组时,它需要apply,这基本上是在后台进行循环,将遍历每一行并应用该方法。这是非常低效的。

为了加速我们的代码,我们可以使用向量化和numpy广播:

x = np.arange(-5,5)
np.divide(1, 1+np.exp(-x))

0    0.006693
1    0.017986
2    0.047426
3    0.119203
4    0.268941
5    0.500000
6    0.731059
7    0.880797
8    0.952574
9    0.982014
dtype: float64

或与熊猫系列:

x = pd.Series(np.arange(-5,5))
np.divide(1, 1+np.exp(-x))