我想定义一个没有初始化长度的二维数组,如下所示:
Matrix = [][]
但这给出了一个错误:
IndexError:列表索引超出范围
我想定义一个没有初始化长度的二维数组,如下所示:
Matrix = [][]
但这给出了一个错误:
IndexError:列表索引超出范围
当前回答
通常,go to模块是NumPy:
import numpy as np
# Generate a random matrix of floats
np.random.rand(cols,rows)
# Generate a random matrix of integers
np.random.randint(1, 10, size=(cols,rows))
其他回答
为便于阅读而重写:
# 2D array/ matrix
# 5 rows, 5 cols
rows_count = 5
cols_count = 5
# create
# creation looks reverse
# create an array of "cols_count" cols, for each of the "rows_count" rows
# all elements are initialized to 0
two_d_array = [[0 for j in range(cols_count)] for i in range(rows_count)]
# index is from 0 to 4
# for both rows & cols
# since 5 rows, 5 cols
# use
two_d_array[0][0] = 1
print two_d_array[0][0] # prints 1 # 1st row, 1st col (top-left element of matrix)
two_d_array[1][0] = 2
print two_d_array[1][0] # prints 2 # 2nd row, 1st col
two_d_array[1][4] = 3
print two_d_array[1][4] # prints 3 # 2nd row, last col
two_d_array[4][4] = 4
print two_d_array[4][4] # prints 4 # last row, last col (right, bottom element of matrix)
在Python中,您将创建一个列表列表。您不必提前声明维度,但可以这样做。例如:
matrix = []
matrix.append([])
matrix.append([])
matrix[0].append(2)
matrix[1].append(3)
现在矩阵[0][0]==2,矩阵[1][0]==3。您还可以使用列表理解语法。本示例使用它两次来构建“二维列表”:
from itertools import count, takewhile
matrix = [[i for i in takewhile(lambda j: j < (k+1) * 10, count(k*10))] for k in range(10)]
如果在开始之前没有大小信息,请创建两个一维列表。
list 1: To store rows
list 2: Actual two-dimensional matrix
将整行存储在第一个列表中。完成后,将列表1追加到列表2中:
from random import randint
coordinates=[]
temp=[]
points=int(raw_input("Enter No Of Coordinates >"))
for i in range(0,points):
randomx=randint(0,1000)
randomy=randint(0,1000)
temp=[]
temp.append(randomx)
temp.append(randomy)
coordinates.append(temp)
print coordinates
输出:
Enter No Of Coordinates >4
[[522, 96], [378, 276], [349, 741], [238, 439]]
如果你真的想要一个矩阵,你最好使用numpy。numpy中的矩阵运算通常使用二维数组类型。创建新阵列有多种方法;其中最有用的是zeros函数,它接受一个形状参数并返回一个给定形状的数组,值初始化为零:
>>> import numpy
>>> numpy.zeros((5, 5))
array([[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.]])
以下是创建二维数组和矩阵的一些其他方法(为了紧凑,去掉了输出):
numpy.arange(25).reshape((5, 5)) # create a 1-d range and reshape
numpy.array(range(25)).reshape((5, 5)) # pass a Python range and reshape
numpy.array([5] * 25).reshape((5, 5)) # pass a Python list and reshape
numpy.empty((5, 5)) # allocate, but don't initialize
numpy.ones((5, 5)) # initialize with ones
numpy也提供了一种矩阵类型,但它不再推荐用于任何用途,将来可能会从numpy中删除。
要声明一个零(1)矩阵:
numpy.zeros((x, y))
e.g.
>>> numpy.zeros((3, 5))
array([[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.]])
或numpy.ones((x,y))例如
>>> np.ones((3, 5))
array([[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.]])
甚至三维都是可能的。(http://www.astro.ufl.edu/~warner/prog/python.html请参见-->多维数组)