我总是发现其他人的创业简介文件对这门语言既有用又有指导意义。此外,虽然我对Bash和Vim进行了一些定制,但对R没有任何定制。
例如,我一直想要的一件事是在窗口终端中输入和输出文本的颜色不同,甚至可能是语法高亮显示。
我总是发现其他人的创业简介文件对这门语言既有用又有指导意义。此外,虽然我对Bash和Vim进行了一些定制,但对R没有任何定制。
例如,我一直想要的一件事是在窗口终端中输入和输出文本的颜色不同,甚至可能是语法高亮显示。
当前回答
下面是将表导出到LaTeX的一小段代码。它将我编写的许多报告的所有列名更改为数学模式。我的. r配置文件的其余部分是相当标准的,上面已经介绍了大部分内容。
# Puts $dollar signs in front and behind all column names col_{sub} -> $col_{sub}$
amscols<-function(x){
colnames(x) <- paste("$", colnames(x), "$", sep = "")
x
}
其他回答
我的不太花哨:
# So the mac gui can find latex
Sys.setenv("PATH" = paste(Sys.getenv("PATH"),"/usr/texbin",sep=":"))
#Use last(x) instead of x[length(x)], works on matrices too
last <- function(x) { tail(x, n = 1) }
#For tikzDevice caching
options( tikzMetricsDictionary='/Users/cameron/.tikzMetricsDictionary' )
我有一个环境变量R_USER_WORKSPACE,它指向包的顶部目录。在. rprofile中,我定义了一个函数devlib,它设置了工作目录(以便data()工作),并在R子目录中获取所有.R文件。它与上面Hadley的l()函数非常相似。
devlib <- function(pkg) {
setwd(file.path(Sys.getenv("R_USER_WORKSPACE", "."), deparse(substitute(pkg)), "dev"))
sapply(list.files("R", pattern=".r$", ignore.case=TRUE, full.names=TRUE), source)
invisible(NULL)
}
.First <- function() {
setwd(Sys.getenv("R_USER_WORKSPACE", "."))
options("repos" = c(CRAN = "http://mirrors.softliste.de/cran/", CRANextra="http://www.stats.ox.ac.uk/pub/RWin"))
}
.Last <- function() update.packages(ask="graphics")
sink(file = 'R.log', split=T)
options(scipen=5)
.ls.objects <- function (pos = 1, pattern, order.by = "Size", decreasing=TRUE, head = TRUE, n = 10) {
# based on postings by Petr Pikal and David Hinds to the r-help list in 2004
# modified by: Dirk Eddelbuettel (http://stackoverflow.com/questions/1358003/tricks-to- manage-the-available-memory-in-an-r-session)
# I then gave it a few tweaks (show size as megabytes and use defaults that I like)
# a data frame of the objects and their associated storage needs.
napply <- function(names, fn) sapply(names, function(x)
fn(get(x, pos = pos)))
names <- ls(pos = pos, pattern = pattern)
obj.class <- napply(names, function(x) as.character(class(x))[1])
obj.mode <- napply(names, mode)
obj.type <- ifelse(is.na(obj.class), obj.mode, obj.class)
obj.size <- napply(names, object.size) / 10^6 # megabytes
obj.dim <- t(napply(names, function(x)
as.numeric(dim(x))[1:2]))
vec <- is.na(obj.dim)[, 1] & (obj.type != "function")
obj.dim[vec, 1] <- napply(names, length)[vec]
out <- data.frame(obj.type, obj.size, obj.dim)
names(out) <- c("Type", "Size", "Rows", "Columns")
out <- out[order(out[[order.by]], decreasing=decreasing), ]
if (head)
out <- head(out, n)
out
}
下面是我发现的两个方便使用窗口的函数。
第一个将\s转换为/。
.repath <- function() {
cat('Paste windows file path and hit RETURN twice')
x <- scan(what = "")
xa <- gsub('\\\\', '/', x)
writeClipboard(paste(xa, collapse=" "))
cat('Here\'s your de-windowsified path. (It\'s also on the clipboard.)\n', xa, '\n')
}
第二个选项在一个新的资源管理器窗口中打开工作目录。
getw <- function() {
suppressWarnings(shell(paste("explorer", gsub('/', '\\\\', getwd()))))
}
这是我的。没什么太创新的。为什么要选择特定的选项:
I went with setting a default for stringsAsFactors because I find it extremely draining to pass it as an argument each time I read a CSV in. That said, it has already caused me some minor vexation when using code written on my usual computer on a computer which did not have my .Rprofile. I'm keeping it, though, as the troubles it has caused pale in comparison to the troubles not having it set everyday used to cause. If you don't load the utils package before options(error=recover), it cannot find recover when placed inside an interactive() block. I used .db for my dropbox setting rather than options(dropbox=...) because I use it all the time inside file.path and it saves much typing. The leading . keeps it from appearing with ls().
话不多说:
if(interactive()) {
options(stringsAsFactors=FALSE)
options(max.print=50)
options(repos="http://cran.mirrors.hoobly.com")
}
.db <- "~/Dropbox"
# `=` <- function(...) stop("Assignment by = disabled, use <- instead")
options(BingMapsKey="blahblahblah") # Used by taRifx.geo::geocode()
.First <- function() {
if(interactive()) {
require(functional)
require(taRifx)
require(taRifx.geo)
require(ggplot2)
require(foreign)
require(R.utils)
require(stringr)
require(reshape2)
require(devtools)
require(codetools)
require(testthat)
require(utils)
options(error=recover)
}
}