我正在寻找一个函数,它将两个列表作为输入,并返回Pearson相关性,以及相关性的重要性。
当前回答
计算相关:
相关性-衡量两个不同变量的相似性
使用皮尔逊相关
from scipy.stats import pearsonr
# final_data is the dataframe with n set of columns
pearson_correlation = final_data.corr(method='pearson')
pearson_correlation
# print correlation of n*n column
使用斯皮尔曼相关
from scipy.stats import spearmanr
# final_data is the dataframe with n set of columns
spearman_correlation = final_data.corr(method='spearman')
spearman_correlation
# print correlation of n*n column
使用Kendall相关
kendall_correlation=final_data.corr(method='kendall')
kendall_correlation
其他回答
Pearson coefficient calculation using pandas in python: I would suggest trying this approach since your data contains lists. It will be easy to interact with your data and manipulate it from the console since you can visualise your data structure and update it as you wish. You can also export the data set and save it and add new data out of the python console for later analysis. This code is simpler and contains less lines of code. I am assuming you need a few quick lines of code to screen your data for further analysis
例子:
data = {'list 1':[2,4,6,8],'list 2':[4,16,36,64]}
import pandas as pd #To Convert your lists to pandas data frames convert your lists into pandas dataframes
df = pd.DataFrame(data, columns = ['list 1','list 2'])
from scipy import stats # For in-built method to get PCC
pearson_coef, p_value = stats.pearsonr(df["list 1"], df["list 2"]) #define the columns to perform calculations on
print("Pearson Correlation Coefficient: ", pearson_coef, "and a P-value of:", p_value) # Results
但是,在分析之前,你没有发布你的数据给我看数据集的大小或可能需要的转换。
本文给出了一种基于稀疏向量的pearson相关的实现方法。这里的向量表示为(index, value)表示的元组列表。两个稀疏向量可以是不同的长度,但总的向量大小必须是相同的。这对于文本挖掘应用程序非常有用,其中向量大小非常大,因为大多数特征都是单词包,因此通常使用稀疏向量执行计算。
def get_pearson_corelation(self, first_feature_vector=[], second_feature_vector=[], length_of_featureset=0):
indexed_feature_dict = {}
if first_feature_vector == [] or second_feature_vector == [] or length_of_featureset == 0:
raise ValueError("Empty feature vectors or zero length of featureset in get_pearson_corelation")
sum_a = sum(value for index, value in first_feature_vector)
sum_b = sum(value for index, value in second_feature_vector)
avg_a = float(sum_a) / length_of_featureset
avg_b = float(sum_b) / length_of_featureset
mean_sq_error_a = sqrt((sum((value - avg_a) ** 2 for index, value in first_feature_vector)) + ((
length_of_featureset - len(first_feature_vector)) * ((0 - avg_a) ** 2)))
mean_sq_error_b = sqrt((sum((value - avg_b) ** 2 for index, value in second_feature_vector)) + ((
length_of_featureset - len(second_feature_vector)) * ((0 - avg_b) ** 2)))
covariance_a_b = 0
#calculate covariance for the sparse vectors
for tuple in first_feature_vector:
if len(tuple) != 2:
raise ValueError("Invalid feature frequency tuple in featureVector: %s") % (tuple,)
indexed_feature_dict[tuple[0]] = tuple[1]
count_of_features = 0
for tuple in second_feature_vector:
count_of_features += 1
if len(tuple) != 2:
raise ValueError("Invalid feature frequency tuple in featureVector: %s") % (tuple,)
if tuple[0] in indexed_feature_dict:
covariance_a_b += ((indexed_feature_dict[tuple[0]] - avg_a) * (tuple[1] - avg_b))
del (indexed_feature_dict[tuple[0]])
else:
covariance_a_b += (0 - avg_a) * (tuple[1] - avg_b)
for index in indexed_feature_dict:
count_of_features += 1
covariance_a_b += (indexed_feature_dict[index] - avg_a) * (0 - avg_b)
#adjust covariance with rest of vector with 0 value
covariance_a_b += (length_of_featureset - count_of_features) * -avg_a * -avg_b
if mean_sq_error_a == 0 or mean_sq_error_b == 0:
return -1
else:
return float(covariance_a_b) / (mean_sq_error_a * mean_sq_error_b)
单元测试:
def test_get_get_pearson_corelation(self):
vector_a = [(1, 1), (2, 2), (3, 3)]
vector_b = [(1, 1), (2, 5), (3, 7)]
self.assertAlmostEquals(self.sim_calculator.get_pearson_corelation(vector_a, vector_b, 3), 0.981980506062, 3, None, None)
vector_a = [(1, 1), (2, 2), (3, 3)]
vector_b = [(1, 1), (2, 5), (3, 7), (4, 14)]
self.assertAlmostEquals(self.sim_calculator.get_pearson_corelation(vector_a, vector_b, 5), -0.0137089240555, 3, None, None)
下面的代码是对该定义的直接解释:
import math
def average(x):
assert len(x) > 0
return float(sum(x)) / len(x)
def pearson_def(x, y):
assert len(x) == len(y)
n = len(x)
assert n > 0
avg_x = average(x)
avg_y = average(y)
diffprod = 0
xdiff2 = 0
ydiff2 = 0
for idx in range(n):
xdiff = x[idx] - avg_x
ydiff = y[idx] - avg_y
diffprod += xdiff * ydiff
xdiff2 += xdiff * xdiff
ydiff2 += ydiff * ydiff
return diffprod / math.sqrt(xdiff2 * ydiff2)
测试:
print pearson_def([1,2,3], [1,5,7])
返回
0.981980506062
这与Excel,这个计算器,SciPy(也是NumPy)一致,分别返回0.981980506和0.9819805060619657,和0.98198050606196574。
R:
> cor( c(1,2,3), c(1,5,7))
[1] 0.9819805
编辑:修正了一个由评论者指出的错误。
与其依赖numpy/scipy,我认为我的答案应该是最容易编码和理解计算Pearson相关系数(PCC)的步骤。
import math
# calculates the mean
def mean(x):
sum = 0.0
for i in x:
sum += i
return sum / len(x)
# calculates the sample standard deviation
def sampleStandardDeviation(x):
sumv = 0.0
for i in x:
sumv += (i - mean(x))**2
return math.sqrt(sumv/(len(x)-1))
# calculates the PCC using both the 2 functions above
def pearson(x,y):
scorex = []
scorey = []
for i in x:
scorex.append((i - mean(x))/sampleStandardDeviation(x))
for j in y:
scorey.append((j - mean(y))/sampleStandardDeviation(y))
# multiplies both lists together into 1 list (hence zip) and sums the whole list
return (sum([i*j for i,j in zip(scorex,scorey)]))/(len(x)-1)
PCC的意义基本上是向你展示两个变量/列表的相关性有多强。 需要注意的是,PCC值的范围是-1到1。 0到1之间的值表示正相关。 0值=最高变异(没有任何相关性)。 -1到0之间的值表示负相关。
这是使用numpy的Pearson Correlation函数的实现:
def corr(data1, data2):
"data1 & data2 should be numpy arrays."
mean1 = data1.mean()
mean2 = data2.mean()
std1 = data1.std()
std2 = data2.std()
# corr = ((data1-mean1)*(data2-mean2)).mean()/(std1*std2)
corr = ((data1*data2).mean()-mean1*mean2)/(std1*std2)
return corr
推荐文章
- 如何读取文件的前N行?
- 如何删除matplotlib中的顶部和右侧轴?
- 解析.py文件,读取AST,修改它,然后写回修改后的源代码
- Visual Studio Code:如何调试Python脚本的参数
- 使用元组/列表等等。从输入vs直接引用类型如list/tuple/etc
- 结合conda环境。Yml和PIP requirements.txt
- 将命名元组转换为字典
- 如何使x轴和y轴的刻度相等呢?
- Numpy在这里函数多个条件
- 在Python中,使用argparse只允许正整数
- 如何排序mongodb与pymongo
- 不可变与可变类型
- 列表是线程安全的吗?
- 操作系统。makdirs在我的路径上不理解“~”
- 如何在Django模板中获得我的网站的域名?