我正在寻找一个函数,它将两个列表作为输入,并返回Pearson相关性,以及相关性的重要性。
当前回答
如果你不喜欢安装scipy,我使用了这个快速的hack,稍微修改了Programming Collective Intelligence:
def pearsonr(x, y):
# Assume len(x) == len(y)
n = len(x)
sum_x = float(sum(x))
sum_y = float(sum(y))
sum_x_sq = sum(xi*xi for xi in x)
sum_y_sq = sum(yi*yi for yi in y)
psum = sum(xi*yi for xi, yi in zip(x, y))
num = psum - (sum_x * sum_y/n)
den = pow((sum_x_sq - pow(sum_x, 2) / n) * (sum_y_sq - pow(sum_y, 2) / n), 0.5)
if den == 0: return 0
return num / den
其他回答
def pearson(x,y):
n=len(x)
vals=range(n)
sumx=sum([float(x[i]) for i in vals])
sumy=sum([float(y[i]) for i in vals])
sumxSq=sum([x[i]**2.0 for i in vals])
sumySq=sum([y[i]**2.0 for i in vals])
pSum=sum([x[i]*y[i] for i in vals])
# Calculating Pearson correlation
num=pSum-(sumx*sumy/n)
den=((sumxSq-pow(sumx,2)/n)*(sumySq-pow(sumy,2)/n))**.5
if den==0: return 0
r=num/den
return r
计算相关:
相关性-衡量两个不同变量的相似性
使用皮尔逊相关
from scipy.stats import pearsonr
# final_data is the dataframe with n set of columns
pearson_correlation = final_data.corr(method='pearson')
pearson_correlation
# print correlation of n*n column
使用斯皮尔曼相关
from scipy.stats import spearmanr
# final_data is the dataframe with n set of columns
spearman_correlation = final_data.corr(method='spearman')
spearman_correlation
# print correlation of n*n column
使用Kendall相关
kendall_correlation=final_data.corr(method='kendall')
kendall_correlation
下面的代码是对该定义的直接解释:
import math
def average(x):
assert len(x) > 0
return float(sum(x)) / len(x)
def pearson_def(x, y):
assert len(x) == len(y)
n = len(x)
assert n > 0
avg_x = average(x)
avg_y = average(y)
diffprod = 0
xdiff2 = 0
ydiff2 = 0
for idx in range(n):
xdiff = x[idx] - avg_x
ydiff = y[idx] - avg_y
diffprod += xdiff * ydiff
xdiff2 += xdiff * xdiff
ydiff2 += ydiff * ydiff
return diffprod / math.sqrt(xdiff2 * ydiff2)
测试:
print pearson_def([1,2,3], [1,5,7])
返回
0.981980506062
这与Excel,这个计算器,SciPy(也是NumPy)一致,分别返回0.981980506和0.9819805060619657,和0.98198050606196574。
R:
> cor( c(1,2,3), c(1,5,7))
[1] 0.9819805
编辑:修正了一个由评论者指出的错误。
一个替代方法可以是一个来自linreturn的本地scipy函数,它计算:
斜率:回归线的斜率 截距:回归线的截距 R-value:相关系数 p值:零假设为斜率为零的假设检验的双面p值 stderr:估计的标准错误
这里有一个例子:
a = [15, 12, 8, 8, 7, 7, 7, 6, 5, 3]
b = [10, 25, 17, 11, 13, 17, 20, 13, 9, 15]
from scipy.stats import linregress
linregress(a, b)
会回复你:
LinregressResult(slope=0.20833333333333337, intercept=13.375, rvalue=0.14499815458068521, pvalue=0.68940144811669501, stderr=0.50261704627083648)
对此,我有一个非常简单易懂的解决方案。对于两个长度相等的数组,Pearson系数可以很容易地计算如下:
def manual_pearson(a,b):
"""
Accepts two arrays of equal length, and computes correlation coefficient.
Numerator is the sum of product of (a - a_avg) and (b - b_avg),
while denominator is the product of a_std and b_std multiplied by
length of array.
"""
a_avg, b_avg = np.average(a), np.average(b)
a_stdev, b_stdev = np.std(a), np.std(b)
n = len(a)
denominator = a_stdev * b_stdev * n
numerator = np.sum(np.multiply(a-a_avg, b-b_avg))
p_coef = numerator/denominator
return p_coef
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录