我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

在c#中:

public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int k)
{
  return k == 0 ? new[] { new T[0] } :
    elements.SelectMany((e, i) =>
      elements.Skip(i + 1).Combinations(k - 1).Select(c => (new[] {e}).Concat(c)));
}

用法:

var result = Combinations(new[] { 1, 2, 3, 4, 5 }, 3);

结果:

123
124
125
134
135
145
234
235
245
345

其他回答

在Python中,利用递归的优势和所有事情都是通过引用完成的事实。对于非常大的集合,这将占用大量内存,但其优点是初始集合可以是一个复杂的对象。它只会找到唯一的组合。

import copy

def find_combinations( length, set, combinations = None, candidate = None ):
    # recursive function to calculate all unique combinations of unique values
    # from [set], given combinations of [length].  The result is populated
    # into the 'combinations' list.
    #
    if combinations == None:
        combinations = []
    if candidate == None:
        candidate = []

    for item in set:
        if item in candidate:
            # this item already appears in the current combination somewhere.
            # skip it
            continue

        attempt = copy.deepcopy(candidate)
        attempt.append(item)
        # sorting the subset is what gives us completely unique combinations,
        # so that [1, 2, 3] and [1, 3, 2] will be treated as equals
        attempt.sort()

        if len(attempt) < length:
            # the current attempt at finding a new combination is still too
            # short, so add another item to the end of the set
            # yay recursion!
            find_combinations( length, set, combinations, attempt )
        else:
            # the current combination attempt is the right length.  If it
            # already appears in the list of found combinations then we'll
            # skip it.
            if attempt in combinations:
                continue
            else:
                # otherwise, we append it to the list of found combinations
                # and move on.
                combinations.append(attempt)
                continue
    return len(combinations)

你可以这样使用它。传递'result'是可选的,所以你可以用它来获取可能组合的数量…尽管这样做效率很低(最好通过计算来完成)。

size = 3
set = [1, 2, 3, 4, 5]
result = []

num = find_combinations( size, set, result ) 
print "size %d results in %d sets" % (size, num)
print "result: %s" % (result,)

您应该从测试数据中得到以下输出:

size 3 results in 10 sets
result: [[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [1, 4, 5], [2, 3, 4], [2, 3, 5], [2, 4, 5], [3, 4, 5]]

如果你的集合是这样的,它也会工作得很好:

set = [
    [ 'vanilla', 'cupcake' ],
    [ 'chocolate', 'pudding' ],
    [ 'vanilla', 'pudding' ],
    [ 'chocolate', 'cookie' ],
    [ 'mint', 'cookie' ]
]

简单但缓慢的c++回溯算法。

#include <iostream>

void backtrack(int* numbers, int n, int k, int i, int s)
{
    if (i == k)
    {
        for (int j = 0; j < k; ++j)
        {
            std::cout << numbers[j];
        }
        std::cout << std::endl;

        return;
    }

    if (s > n)
    {
        return;
    }

    numbers[i] = s;
    backtrack(numbers, n, k, i + 1, s + 1);
    backtrack(numbers, n, k, i, s + 1);
}

int main(int argc, char* argv[])
{
    int n = 5;
    int k = 3;

    int* numbers = new int[k];

    backtrack(numbers, n, k, 0, 1);

    delete[] numbers;

    return 0;
}

简短的python代码,产生索引位置

def yield_combos(n,k):
    # n is set size, k is combo size

    i = 0
    a = [0]*k

    while i > -1:
        for j in range(i+1, k):
            a[j] = a[j-1]+1
        i=j
        yield a
        while a[i] == i + n - k:
            i -= 1
        a[i] += 1

在c#中:

public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int k)
{
  return k == 0 ? new[] { new T[0] } :
    elements.SelectMany((e, i) =>
      elements.Skip(i + 1).Combinations(k - 1).Select(c => (new[] {e}).Concat(c)));
}

用法:

var result = Combinations(new[] { 1, 2, 3, 4, 5 }, 3);

结果:

123
124
125
134
135
145
234
235
245
345

下面是我的Scala解决方案:

def combinations[A](s: List[A], k: Int): List[List[A]] = 
  if (k > s.length) Nil
  else if (k == 1) s.map(List(_))
  else combinations(s.tail, k - 1).map(s.head :: _) ::: combinations(s.tail, k)