我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

为此,我在SQL Server 2005中创建了一个解决方案,并将其发布在我的网站上:http://www.jessemclain.com/downloads/code/sql/fn_GetMChooseNCombos.sql.htm

下面是一个例子来说明用法:

SELECT * FROM dbo.fn_GetMChooseNCombos('ABCD', 2, '')

结果:

Word
----
AB
AC
AD
BC
BD
CD

(6 row(s) affected)

其他回答

我有一个用于project euler的排列算法,用python编写:

def missing(miss,src):
    "Returns the list of items in src not present in miss"
    return [i for i in src if i not in miss]


def permutation_gen(n,l):
    "Generates all the permutations of n items of the l list"
    for i in l:
        if n<=1: yield [i]
        r = [i]
        for j in permutation_gen(n-1,missing([i],l)):  yield r+j

If

n<len(l) 

你应该有所有你需要的组合,没有重复,你需要吗?

它是一个生成器,所以你可以这样使用它:

for comb in permutation_gen(3,list("ABCDEFGH")):
    print comb 

另一个具有组合索引惰性生成的c#版本。这个版本维护了一个索引数组来定义所有值列表和当前组合值之间的映射,即在整个运行时不断使用O(k)额外的空间。该代码在O(k)时间内生成单个组合,包括第一个组合。

public static IEnumerable<T[]> Combinations<T>(this T[] values, int k)
{
    if (k < 0 || values.Length < k)
        yield break; // invalid parameters, no combinations possible

    // generate the initial combination indices
    var combIndices = new int[k];
    for (var i = 0; i < k; i++)
    {
        combIndices[i] = i;
    }

    while (true)
    {
        // return next combination
        var combination = new T[k];
        for (var i = 0; i < k; i++)
        {
            combination[i] = values[combIndices[i]];
        }
        yield return combination;

        // find first index to update
        var indexToUpdate = k - 1;
        while (indexToUpdate >= 0 && combIndices[indexToUpdate] >= values.Length - k + indexToUpdate)
        {
            indexToUpdate--;
        }

        if (indexToUpdate < 0)
            yield break; // done

        // update combination indices
        for (var combIndex = combIndices[indexToUpdate] + 1; indexToUpdate < k; indexToUpdate++, combIndex++)
        {
            combIndices[indexToUpdate] = combIndex;
        }
    }
}

测试代码:

foreach (var combination in new[] {'a', 'b', 'c', 'd', 'e'}.Combinations(3))
{
    System.Console.WriteLine(String.Join(" ", combination));
}

输出:

a b c
a b d
a b e
a c d
a c e
a d e
b c d
b c e
b d e
c d e

下面是我最近用Java写的一段代码,它计算并返回从“outOf”元素中“num”元素的所有组合。

// author: Sourabh Bhat (heySourabh@gmail.com)

public class Testing
{
    public static void main(String[] args)
    {

// Test case num = 5, outOf = 8.

        int num = 5;
        int outOf = 8;
        int[][] combinations = getCombinations(num, outOf);
        for (int i = 0; i < combinations.length; i++)
        {
            for (int j = 0; j < combinations[i].length; j++)
            {
                System.out.print(combinations[i][j] + " ");
            }
            System.out.println();
        }
    }

    private static int[][] getCombinations(int num, int outOf)
    {
        int possibilities = get_nCr(outOf, num);
        int[][] combinations = new int[possibilities][num];
        int arrayPointer = 0;

        int[] counter = new int[num];

        for (int i = 0; i < num; i++)
        {
            counter[i] = i;
        }
        breakLoop: while (true)
        {
            // Initializing part
            for (int i = 1; i < num; i++)
            {
                if (counter[i] >= outOf - (num - 1 - i))
                    counter[i] = counter[i - 1] + 1;
            }

            // Testing part
            for (int i = 0; i < num; i++)
            {
                if (counter[i] < outOf)
                {
                    continue;
                } else
                {
                    break breakLoop;
                }
            }

            // Innermost part
            combinations[arrayPointer] = counter.clone();
            arrayPointer++;

            // Incrementing part
            counter[num - 1]++;
            for (int i = num - 1; i >= 1; i--)
            {
                if (counter[i] >= outOf - (num - 1 - i))
                    counter[i - 1]++;
            }
        }

        return combinations;
    }

    private static int get_nCr(int n, int r)
    {
        if(r > n)
        {
            throw new ArithmeticException("r is greater then n");
        }
        long numerator = 1;
        long denominator = 1;
        for (int i = n; i >= r + 1; i--)
        {
            numerator *= i;
        }
        for (int i = 2; i <= n - r; i++)
        {
            denominator *= i;
        }

        return (int) (numerator / denominator);
    }
}

我在c++中为组合创建了一个通用类。 它是这样使用的。

char ar[] = "0ABCDEFGH";
nCr ncr(8, 3);
while(ncr.next()) {
    for(int i=0; i<ncr.size(); i++) cout << ar[ncr[i]];
    cout << ' ';
}

我的库ncr[i]从1返回,而不是从0返回。 这就是为什么数组中有0。 如果你想考虑订单,只需将nCr class改为nPr即可。 用法是相同的。

结果

美国广播公司 ABD 安倍 沛富 ABG ABH 澳洲牧牛犬 王牌 ACF ACG 呵呀 正面 ADF ADG 抗利尿激素 时 AEG AEH 二自由度陀螺仪 AFH 啊 BCD 公元前 供应量 波士顿咨询公司 BCH 12 快速公车提供 BDG BDH 性能试验 求 本· 高炉煤气 BFH 使用BGH CDE 提供 CDG 鼎晖 欧共体语言教学大纲的 CEG 另一 CFG CFH 全息 DEF 度 电气设施 脱硫 干扰 DGH EFG EFH EGH FGH

下面是头文件。

#pragma once
#include <exception>

class NRexception : public std::exception
{
public:
    virtual const char* what() const throw() {
        return "Combination : N, R should be positive integer!!";
    }
};

class Combination
{
public:
    Combination(int n, int r);
    virtual ~Combination() { delete [] ar;}
    int& operator[](unsigned i) {return ar[i];}
    bool next();
    int size() {return r;}
    static int factorial(int n);

protected:
    int* ar;
    int n, r;
};

class nCr : public Combination
{
public: 
    nCr(int n, int r);
    bool next();
    int count() const;
};

class nTr : public Combination
{
public:
    nTr(int n, int r);
    bool next();
    int count() const;
};

class nHr : public nTr
{
public:
    nHr(int n, int r) : nTr(n,r) {}
    bool next();
    int count() const;
};

class nPr : public Combination
{
public:
    nPr(int n, int r);
    virtual ~nPr() {delete [] on;}
    bool next();
    void rewind();
    int count() const;

private:
    bool* on;
    void inc_ar(int i);
};

以及执行。

#include "combi.h"
#include <set>
#include<cmath>

Combination::Combination(int n, int r)
{
    //if(n < 1 || r < 1) throw NRexception();
    ar = new int[r];
    this->n = n;
    this->r = r;
}

int Combination::factorial(int n) 
{
    return n == 1 ? n : n * factorial(n-1);
}

int nPr::count() const
{
    return factorial(n)/factorial(n-r);
}

int nCr::count() const
{
    return factorial(n)/factorial(n-r)/factorial(r);
}

int nTr::count() const
{
    return pow(n, r);
}

int nHr::count() const
{
    return factorial(n+r-1)/factorial(n-1)/factorial(r);
}

nCr::nCr(int n, int r) : Combination(n, r)
{
    if(r == 0) return;
    for(int i=0; i<r-1; i++) ar[i] = i + 1;
    ar[r-1] = r-1;
}

nTr::nTr(int n, int r) : Combination(n, r)
{
    for(int i=0; i<r-1; i++) ar[i] = 1;
    ar[r-1] = 0;
}

bool nCr::next()
{
    if(r == 0) return false;
    ar[r-1]++;
    int i = r-1;
    while(ar[i] == n-r+2+i) {
        if(--i == -1) return false;
        ar[i]++;
    }
    while(i < r-1) ar[i+1] = ar[i++] + 1;
    return true;
}

bool nTr::next()
{
    ar[r-1]++;
    int i = r-1;
    while(ar[i] == n+1) {
        ar[i] = 1;
        if(--i == -1) return false;
        ar[i]++;
    }
    return true;
}

bool nHr::next()
{
    ar[r-1]++;
    int i = r-1;
    while(ar[i] == n+1) {
        if(--i == -1) return false;
        ar[i]++;
    }
    while(i < r-1) ar[i+1] = ar[i++];
    return true;
}

nPr::nPr(int n, int r) : Combination(n, r)
{
    on = new bool[n+2];
    for(int i=0; i<n+2; i++) on[i] = false;
    for(int i=0; i<r; i++) {
        ar[i] = i + 1;
        on[i] = true;
    }
    ar[r-1] = 0;
}

void nPr::rewind()
{
    for(int i=0; i<r; i++) {
        ar[i] = i + 1;
        on[i] = true;
    }
    ar[r-1] = 0;
}

bool nPr::next()
{   
    inc_ar(r-1);

    int i = r-1;
    while(ar[i] == n+1) {
        if(--i == -1) return false;
        inc_ar(i);
    }
    while(i < r-1) {
        ar[++i] = 0;
        inc_ar(i);
    }
    return true;
}

void nPr::inc_ar(int i)
{
    on[ar[i]] = false;
    while(on[++ar[i]]);
    if(ar[i] != n+1) on[ar[i]] = true;
}

也许我错过了重点(你需要的是算法,而不是现成的解决方案),但看起来scala已经开箱即用了(现在):

def combis(str:String, k:Int):Array[String] = {
  str.combinations(k).toArray 
}

使用这样的方法:

  println(combis("abcd",2).toList)

会产生:

  List(ab, ac, ad, bc, bd, cd)