我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

Haskell中的简单递归算法

import Data.List

combinations 0 lst = [[]]
combinations n lst = do
    (x:xs) <- tails lst
    rest   <- combinations (n-1) xs
    return $ x : rest

我们首先定义特殊情况,即选择零元素。它产生一个单一的结果,这是一个空列表(即一个包含空列表的列表)。

对于n> 0, x遍历列表中的每一个元素xs是x之后的每一个元素。

Rest通过对组合的递归调用从xs中选取n - 1个元素。该函数的最终结果是一个列表,其中每个元素都是x: rest(即对于x和rest的每个不同值,x为头部,rest为尾部的列表)。

> combinations 3 "abcde"
["abc","abd","abe","acd","ace","ade","bcd","bce","bde","cde"]

当然,由于Haskell是懒惰的,列表是根据需要逐渐生成的,因此您可以部分计算指数级的大组合。

> let c = combinations 8 "abcdefghijklmnopqrstuvwxyz"
> take 10 c
["abcdefgh","abcdefgi","abcdefgj","abcdefgk","abcdefgl","abcdefgm","abcdefgn",
 "abcdefgo","abcdefgp","abcdefgq"]

其他回答

这是一个c++解决方案,我提出使用递归和位移位。它也可以在C语言中工作。

void r_nCr(unsigned int startNum, unsigned int bitVal, unsigned int testNum) // Should be called with arguments (2^r)-1, 2^(r-1), 2^(n-1)
{
    unsigned int n = (startNum - bitVal) << 1;
    n += bitVal ? 1 : 0;

    for (unsigned int i = log2(testNum) + 1; i > 0; i--) // Prints combination as a series of 1s and 0s
        cout << (n >> (i - 1) & 1);
    cout << endl;

    if (!(n & testNum) && n != startNum)
        r_nCr(n, bitVal, testNum);

    if (bitVal && bitVal < testNum)
        r_nCr(startNum, bitVal >> 1, testNum);
}

你可以在这里找到这是如何工作的解释。

我的实现在c/c++

#include <unistd.h>
#include <stdio.h>
#include <iconv.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>

int main(int argc, char **argv)
{
    int opt = -1, min_len = 0, max_len = 0;
    char ofile[256], fchar[2], tchar[2];
    ofile[0] = 0;
    fchar[0] = 0;
    tchar[0] = 0;
    while((opt = getopt(argc, argv, "o:f:t:l:L:")) != -1)
    {
            switch(opt)
            {
                    case 'o':
                    strncpy(ofile, optarg, 255);
                    break;
                    case 'f':
                    strncpy(fchar, optarg, 1);
                    break;
                    case 't':
                    strncpy(tchar, optarg, 1);
                    break;
                    case 'l':
                    min_len = atoi(optarg);
                    break;
                    case 'L':
                    max_len = atoi(optarg);
                    break;
                    default:
                    printf("usage: %s -oftlL\n\t-o output file\n\t-f from char\n\t-t to char\n\t-l min seq len\n\t-L max seq len", argv[0]);
            }
    }
if(max_len < 1)
{
    printf("error, length must be more than 0\n");
    return 1;
}
if(min_len > max_len)
{
    printf("error, max length must be greater or equal min_length\n");
    return 1;
}
if((int)fchar[0] > (int)tchar[0])
{
    printf("error, invalid range specified\n");
    return 1;
}
FILE *out = fopen(ofile, "w");
if(!out)
{
    printf("failed to open input file with error: %s\n", strerror(errno));
    return 1;
}
int cur_len = min_len;
while(cur_len <= max_len)
{
    char buf[cur_len];
    for(int i = 0; i < cur_len; i++)
        buf[i] = fchar[0];
    fwrite(buf, cur_len, 1, out);
    fwrite("\n", 1, 1, out);
    while(buf[0] != (tchar[0]+1))
    {
        while(buf[cur_len-1] < tchar[0])
        {
            (int)buf[cur_len-1]++;
            fwrite(buf, cur_len, 1, out);
            fwrite("\n", 1, 1, out);
        }
        if(cur_len < 2)
            break;
        if(buf[0] == tchar[0])
        {
            bool stop = true;
            for(int i = 1; i < cur_len; i++)
            {
                if(buf[i] != tchar[0])
                {
                    stop = false;
                    break;
                }
            }
            if(stop)
                break;
        }
        int u = cur_len-2;
        for(; u>=0 && buf[u] >= tchar[0]; u--)
            ;
        (int)buf[u]++;
        for(int i = u+1; i < cur_len; i++)
            buf[i] = fchar[0];
        fwrite(buf, cur_len, 1, out);
        fwrite("\n", 1, 1, out);
    }
    cur_len++;
}
fclose(out);
return 0;
}

这里我的实现在c++,它写所有的组合到指定的文件,但行为可以改变,我在生成各种字典,它接受最小和最大长度和字符范围,目前只有ANSI支持,它足以满足我的需求

下面的递归算法从有序集中选取所有k元素组合:

选择组合中的第一个元素I 将I与从大于I的元素集中递归选择的k-1个元素的组合组合。

对集合中的每一个i进行上述迭代。

为了避免重复,您必须选择比i大的其余元素。这样[3,5]将只被选中一次,即[3]与[5]结合,而不是两次(该条件消除了[5]+[3])。没有这个条件,你得到的是变化而不是组合。

在c#中:

public static IEnumerable<IEnumerable<T>> Combinations<T>(this IEnumerable<T> elements, int k)
{
  return k == 0 ? new[] { new T[0] } :
    elements.SelectMany((e, i) =>
      elements.Skip(i + 1).Combinations(k - 1).Select(c => (new[] {e}).Concat(c)));
}

用法:

var result = Combinations(new[] { 1, 2, 3, 4, 5 }, 3);

结果:

123
124
125
134
135
145
234
235
245
345
#include <stdio.h>

unsigned int next_combination(unsigned int *ar, size_t n, unsigned int k)
{
    unsigned int finished = 0;
    unsigned int changed = 0;
    unsigned int i;

    if (k > 0) {
        for (i = k - 1; !finished && !changed; i--) {
            if (ar[i] < (n - 1) - (k - 1) + i) {
                /* Increment this element */
                ar[i]++;
                if (i < k - 1) {
                    /* Turn the elements after it into a linear sequence */
                    unsigned int j;
                    for (j = i + 1; j < k; j++) {
                        ar[j] = ar[j - 1] + 1;
                    }
                }
                changed = 1;
            }
            finished = i == 0;
        }
        if (!changed) {
            /* Reset to first combination */
            for (i = 0; i < k; i++) {
                ar[i] = i;
            }
        }
    }
    return changed;
}

typedef void(*printfn)(const void *, FILE *);

void print_set(const unsigned int *ar, size_t len, const void **elements,
    const char *brackets, printfn print, FILE *fptr)
{
    unsigned int i;
    fputc(brackets[0], fptr);
    for (i = 0; i < len; i++) {
        print(elements[ar[i]], fptr);
        if (i < len - 1) {
            fputs(", ", fptr);
        }
    }
    fputc(brackets[1], fptr);
}

int main(void)
{
    unsigned int numbers[] = { 0, 1, 2 };
    char *elements[] = { "a", "b", "c", "d", "e" };
    const unsigned int k = sizeof(numbers) / sizeof(unsigned int);
    const unsigned int n = sizeof(elements) / sizeof(const char*);

    do {
        print_set(numbers, k, (void*)elements, "[]", (printfn)fputs, stdout);
        putchar('\n');
    } while (next_combination(numbers, n, k));
    getchar();
    return 0;
}