我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

Python中的简短示例:

def comb(sofar, rest, n):
    if n == 0:
        print sofar
    else:
        for i in range(len(rest)):
            comb(sofar + rest[i], rest[i+1:], n-1)

>>> comb("", "abcde", 3)
abc
abd
abe
acd
ace
ade
bcd
bce
bde
cde

为了解释,递归方法用下面的例子描述:

示例:A B C D E 3的所有组合是:

A与其余2的所有组合(B C D E) B与其余2的所有组合(C D E) C与其余2的所有组合(D E)

其他回答

也许我错过了重点(你需要的是算法,而不是现成的解决方案),但看起来scala已经开箱即用了(现在):

def combis(str:String, k:Int):Array[String] = {
  str.combinations(k).toArray 
}

使用这样的方法:

  println(combis("abcd",2).toList)

会产生:

  List(ab, ac, ad, bc, bd, cd)

Python中的简短示例:

def comb(sofar, rest, n):
    if n == 0:
        print sofar
    else:
        for i in range(len(rest)):
            comb(sofar + rest[i], rest[i+1:], n-1)

>>> comb("", "abcde", 3)
abc
abd
abe
acd
ace
ade
bcd
bce
bde
cde

为了解释,递归方法用下面的例子描述:

示例:A B C D E 3的所有组合是:

A与其余2的所有组合(B C D E) B与其余2的所有组合(C D E) C与其余2的所有组合(D E)

算法:

从1数到2^n。 将每个数字转换为二进制表示。 根据位置,将每个“on”位转换为集合中的元素。

在c#中:

void Main()
{
    var set = new [] {"A", "B", "C", "D" }; //, "E", "F", "G", "H", "I", "J" };

    var kElement = 2;

    for(var i = 1; i < Math.Pow(2, set.Length); i++) {
        var result = Convert.ToString(i, 2).PadLeft(set.Length, '0');
        var cnt = Regex.Matches(Regex.Escape(result),  "1").Count; 
        if (cnt == kElement) {
            for(int j = 0; j < set.Length; j++)
                if ( Char.GetNumericValue(result[j]) == 1)
                    Console.Write(set[j]);
            Console.WriteLine();
        }
    }
}

为什么它能起作用?

在n元素集的子集和n位序列之间存在双射。

这意味着我们可以通过数数序列来计算出有多少个子集。

例如,下面的四个元素集可以用{0,1}X {0,1} X {0,1} X{0,1}(或2^4)个不同的序列表示。

我们要做的就是从1数到2^n来找到所有的组合。(我们忽略空集。)接下来,将数字转换为二进制表示。然后将集合中的元素替换为“on”位。

如果只需要k个元素的结果,则只在k位为“on”时打印。

(如果你想要所有的子集,而不是k长度的子集,删除cnt/kElement部分。)

(有关证明,请参阅麻省理工学院免费课件计算机科学数学,雷曼等,第11.2.2节。https://ocw.mit.edu/courses/electrical -工程-和-计算机- science/6 - 042 j -数学- -计算机科学-下降- 2010/readings/)

这是一个c++解决方案,我提出使用递归和位移位。它也可以在C语言中工作。

void r_nCr(unsigned int startNum, unsigned int bitVal, unsigned int testNum) // Should be called with arguments (2^r)-1, 2^(r-1), 2^(n-1)
{
    unsigned int n = (startNum - bitVal) << 1;
    n += bitVal ? 1 : 0;

    for (unsigned int i = log2(testNum) + 1; i > 0; i--) // Prints combination as a series of 1s and 0s
        cout << (n >> (i - 1) & 1);
    cout << endl;

    if (!(n & testNum) && n != startNum)
        r_nCr(n, bitVal, testNum);

    if (bitVal && bitVal < testNum)
        r_nCr(startNum, bitVal >> 1, testNum);
}

你可以在这里找到这是如何工作的解释。

另一种python递归解决方案。

def combination_indicies(n, k, j = 0, stack = []):   
    if len(stack) == k:            
        yield list(stack)
        return
        
    for i in range(j, n):
        stack.append(i)
        for x in combination_indicies(n, k, i + 1, stack):            
            yield x
        stack.pop()  
        
list(combination_indicies(5, 3))

输出:

[[0, 1, 2],
 [0, 1, 3],
 [0, 1, 4],
 [0, 2, 3],
 [0, 2, 4],
 [0, 3, 4],
 [1, 2, 3],
 [1, 2, 4],
 [1, 3, 4],
 [2, 3, 4]]