我想写一个函数,它以一个字母数组作为参数,并从中选择一些字母。

假设您提供了一个包含8个字母的数组,并希望从中选择3个字母。那么你应该得到:

8! / ((8 - 3)! * 3!) = 56

数组(或单词),每个数组由3个字母组成。


当前回答

这是我对javascript的贡献(没有递归)

set = ["q0", "q1", "q2", "q3"]
collector = []


function comb(num) {
  results = []
  one_comb = []
  for (i = set.length - 1; i >= 0; --i) {
    tmp = Math.pow(2, i)
    quotient = parseInt(num / tmp)
    results.push(quotient)
    num = num % tmp
  }
  k = 0
  for (i = 0; i < results.length; ++i)
    if (results[i]) {
      ++k
      one_comb.push(set[i])
    }
  if (collector[k] == undefined)
    collector[k] = []
  collector[k].push(one_comb)
}


sum = 0
for (i = 0; i < set.length; ++i)
  sum += Math.pow(2, i)
 for (ii = sum; ii > 0; --ii)
  comb(ii)
 cnt = 0
for (i = 1; i < collector.length; ++i) {
  n = 0
  for (j = 0; j < collector[i].length; ++j)
    document.write(++cnt, " - " + (++n) + " - ", collector[i][j], "<br>")
  document.write("<hr>")
}   

其他回答

我的实现在c/c++

#include <unistd.h>
#include <stdio.h>
#include <iconv.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>

int main(int argc, char **argv)
{
    int opt = -1, min_len = 0, max_len = 0;
    char ofile[256], fchar[2], tchar[2];
    ofile[0] = 0;
    fchar[0] = 0;
    tchar[0] = 0;
    while((opt = getopt(argc, argv, "o:f:t:l:L:")) != -1)
    {
            switch(opt)
            {
                    case 'o':
                    strncpy(ofile, optarg, 255);
                    break;
                    case 'f':
                    strncpy(fchar, optarg, 1);
                    break;
                    case 't':
                    strncpy(tchar, optarg, 1);
                    break;
                    case 'l':
                    min_len = atoi(optarg);
                    break;
                    case 'L':
                    max_len = atoi(optarg);
                    break;
                    default:
                    printf("usage: %s -oftlL\n\t-o output file\n\t-f from char\n\t-t to char\n\t-l min seq len\n\t-L max seq len", argv[0]);
            }
    }
if(max_len < 1)
{
    printf("error, length must be more than 0\n");
    return 1;
}
if(min_len > max_len)
{
    printf("error, max length must be greater or equal min_length\n");
    return 1;
}
if((int)fchar[0] > (int)tchar[0])
{
    printf("error, invalid range specified\n");
    return 1;
}
FILE *out = fopen(ofile, "w");
if(!out)
{
    printf("failed to open input file with error: %s\n", strerror(errno));
    return 1;
}
int cur_len = min_len;
while(cur_len <= max_len)
{
    char buf[cur_len];
    for(int i = 0; i < cur_len; i++)
        buf[i] = fchar[0];
    fwrite(buf, cur_len, 1, out);
    fwrite("\n", 1, 1, out);
    while(buf[0] != (tchar[0]+1))
    {
        while(buf[cur_len-1] < tchar[0])
        {
            (int)buf[cur_len-1]++;
            fwrite(buf, cur_len, 1, out);
            fwrite("\n", 1, 1, out);
        }
        if(cur_len < 2)
            break;
        if(buf[0] == tchar[0])
        {
            bool stop = true;
            for(int i = 1; i < cur_len; i++)
            {
                if(buf[i] != tchar[0])
                {
                    stop = false;
                    break;
                }
            }
            if(stop)
                break;
        }
        int u = cur_len-2;
        for(; u>=0 && buf[u] >= tchar[0]; u--)
            ;
        (int)buf[u]++;
        for(int i = u+1; i < cur_len; i++)
            buf[i] = fchar[0];
        fwrite(buf, cur_len, 1, out);
        fwrite("\n", 1, 1, out);
    }
    cur_len++;
}
fclose(out);
return 0;
}

这里我的实现在c++,它写所有的组合到指定的文件,但行为可以改变,我在生成各种字典,它接受最小和最大长度和字符范围,目前只有ANSI支持,它足以满足我的需求

由于没有提到编程语言,我假设列表也是可以的。下面是一个OCaml版本,适用于短列表(非尾递归)。给定一个包含任意类型元素的列表l和一个整数n,如果我们假设结果列表中元素的顺序被忽略,它将返回一个包含l的n个元素的所有可能列表的列表,即list ['a';'b']与['b';'a']相同,并且将报告一次。因此,结果列表的大小将是((list。长度l)选择n)。

递归的直观原理如下:取列表的头,然后进行两次递归调用:

递归调用1 (RC1):到列表的尾部,但选择n-1个元素 递归调用2 (RC2):到列表的尾部,但选择n个元素

要组合递归结果,list-乘(请使用奇数名称)列表的头部与RC1的结果,然后附加(@)RC2的结果。List-multiply是如下操作lmul:

a lmul [ l1 ; l2 ; l3] = [a::l1 ; a::l2 ; a::l3]

Lmul在下面的代码中实现

List.map (fun x -> h::x)

当列表的大小等于您想要选择的元素数量时,递归将终止,在这种情况下,您只需返回列表本身。

下面是OCaml中实现上述算法的四行代码:

    let rec choose l n = match l, (List.length l) with                                 
    | _, lsize  when n==lsize  -> [l]                                
    | h::t, _ -> (List.map (fun x-> h::x) (choose t (n-1))) @ (choose t n)   
    | [], _ -> []    

这是我对javascript的贡献(没有递归)

set = ["q0", "q1", "q2", "q3"]
collector = []


function comb(num) {
  results = []
  one_comb = []
  for (i = set.length - 1; i >= 0; --i) {
    tmp = Math.pow(2, i)
    quotient = parseInt(num / tmp)
    results.push(quotient)
    num = num % tmp
  }
  k = 0
  for (i = 0; i < results.length; ++i)
    if (results[i]) {
      ++k
      one_comb.push(set[i])
    }
  if (collector[k] == undefined)
    collector[k] = []
  collector[k].push(one_comb)
}


sum = 0
for (i = 0; i < set.length; ++i)
  sum += Math.pow(2, i)
 for (ii = sum; ii > 0; --ii)
  comb(ii)
 cnt = 0
for (i = 1; i < collector.length; ++i) {
  n = 0
  for (j = 0; j < collector[i].length; ++j)
    document.write(++cnt, " - " + (++n) + " - ", collector[i][j], "<br>")
  document.write("<hr>")
}   

Python中的简短示例:

def comb(sofar, rest, n):
    if n == 0:
        print sofar
    else:
        for i in range(len(rest)):
            comb(sofar + rest[i], rest[i+1:], n-1)

>>> comb("", "abcde", 3)
abc
abd
abe
acd
ace
ade
bcd
bce
bde
cde

为了解释,递归方法用下面的例子描述:

示例:A B C D E 3的所有组合是:

A与其余2的所有组合(B C D E) B与其余2的所有组合(C D E) C与其余2的所有组合(D E)

我在c++中为组合创建了一个通用类。 它是这样使用的。

char ar[] = "0ABCDEFGH";
nCr ncr(8, 3);
while(ncr.next()) {
    for(int i=0; i<ncr.size(); i++) cout << ar[ncr[i]];
    cout << ' ';
}

我的库ncr[i]从1返回,而不是从0返回。 这就是为什么数组中有0。 如果你想考虑订单,只需将nCr class改为nPr即可。 用法是相同的。

结果

美国广播公司 ABD 安倍 沛富 ABG ABH 澳洲牧牛犬 王牌 ACF ACG 呵呀 正面 ADF ADG 抗利尿激素 时 AEG AEH 二自由度陀螺仪 AFH 啊 BCD 公元前 供应量 波士顿咨询公司 BCH 12 快速公车提供 BDG BDH 性能试验 求 本· 高炉煤气 BFH 使用BGH CDE 提供 CDG 鼎晖 欧共体语言教学大纲的 CEG 另一 CFG CFH 全息 DEF 度 电气设施 脱硫 干扰 DGH EFG EFH EGH FGH

下面是头文件。

#pragma once
#include <exception>

class NRexception : public std::exception
{
public:
    virtual const char* what() const throw() {
        return "Combination : N, R should be positive integer!!";
    }
};

class Combination
{
public:
    Combination(int n, int r);
    virtual ~Combination() { delete [] ar;}
    int& operator[](unsigned i) {return ar[i];}
    bool next();
    int size() {return r;}
    static int factorial(int n);

protected:
    int* ar;
    int n, r;
};

class nCr : public Combination
{
public: 
    nCr(int n, int r);
    bool next();
    int count() const;
};

class nTr : public Combination
{
public:
    nTr(int n, int r);
    bool next();
    int count() const;
};

class nHr : public nTr
{
public:
    nHr(int n, int r) : nTr(n,r) {}
    bool next();
    int count() const;
};

class nPr : public Combination
{
public:
    nPr(int n, int r);
    virtual ~nPr() {delete [] on;}
    bool next();
    void rewind();
    int count() const;

private:
    bool* on;
    void inc_ar(int i);
};

以及执行。

#include "combi.h"
#include <set>
#include<cmath>

Combination::Combination(int n, int r)
{
    //if(n < 1 || r < 1) throw NRexception();
    ar = new int[r];
    this->n = n;
    this->r = r;
}

int Combination::factorial(int n) 
{
    return n == 1 ? n : n * factorial(n-1);
}

int nPr::count() const
{
    return factorial(n)/factorial(n-r);
}

int nCr::count() const
{
    return factorial(n)/factorial(n-r)/factorial(r);
}

int nTr::count() const
{
    return pow(n, r);
}

int nHr::count() const
{
    return factorial(n+r-1)/factorial(n-1)/factorial(r);
}

nCr::nCr(int n, int r) : Combination(n, r)
{
    if(r == 0) return;
    for(int i=0; i<r-1; i++) ar[i] = i + 1;
    ar[r-1] = r-1;
}

nTr::nTr(int n, int r) : Combination(n, r)
{
    for(int i=0; i<r-1; i++) ar[i] = 1;
    ar[r-1] = 0;
}

bool nCr::next()
{
    if(r == 0) return false;
    ar[r-1]++;
    int i = r-1;
    while(ar[i] == n-r+2+i) {
        if(--i == -1) return false;
        ar[i]++;
    }
    while(i < r-1) ar[i+1] = ar[i++] + 1;
    return true;
}

bool nTr::next()
{
    ar[r-1]++;
    int i = r-1;
    while(ar[i] == n+1) {
        ar[i] = 1;
        if(--i == -1) return false;
        ar[i]++;
    }
    return true;
}

bool nHr::next()
{
    ar[r-1]++;
    int i = r-1;
    while(ar[i] == n+1) {
        if(--i == -1) return false;
        ar[i]++;
    }
    while(i < r-1) ar[i+1] = ar[i++];
    return true;
}

nPr::nPr(int n, int r) : Combination(n, r)
{
    on = new bool[n+2];
    for(int i=0; i<n+2; i++) on[i] = false;
    for(int i=0; i<r; i++) {
        ar[i] = i + 1;
        on[i] = true;
    }
    ar[r-1] = 0;
}

void nPr::rewind()
{
    for(int i=0; i<r; i++) {
        ar[i] = i + 1;
        on[i] = true;
    }
    ar[r-1] = 0;
}

bool nPr::next()
{   
    inc_ar(r-1);

    int i = r-1;
    while(ar[i] == n+1) {
        if(--i == -1) return false;
        inc_ar(i);
    }
    while(i < r-1) {
        ar[++i] = 0;
        inc_ar(i);
    }
    return true;
}

void nPr::inc_ar(int i)
{
    on[ar[i]] = false;
    while(on[++ar[i]]);
    if(ar[i] != n+1) on[ar[i]] = true;
}