我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
我试图使用熊猫操作.csv文件,但我得到这个错误:
pandas.parser.CParserError:标记数据错误。C错误:第3行有2个字段,见12
我试着读过熊猫的文件,但一无所获。
我的代码很简单:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
我该如何解决这个问题?我应该使用csv模块还是其他语言?
文件来自晨星公司
当前回答
以下是对我有用的(我张贴了这个答案,因为我在谷歌协作笔记本中特别遇到了这个问题):
df = pd.read_csv("/path/foo.csv", delimiter=';', skiprows=0, low_memory=False)
其他回答
解析器被文件头弄糊涂了。它读取第一行并从该行推断列数。但是前两行并不能代表文件中的实际数据。
用data = pd试试。read_csv(路径,skiprows = 2)
我从同事那里收到了.csv文件,当我试图使用pd.read_csv()读取csv文件时,我收到了类似的错误。显然,它试图使用第一行来为数据框架生成列,但许多行包含的列比第一行所暗示的要多。我最终通过简单地打开文件并重新保存为.csv并再次使用pd.read_csv()来解决这个问题。
你可以这样做,以避免问题-
train = pd.read_csv('/home/Project/output.csv' , header=None)
just add - header=None
希望这能有所帮助!!
在我的例子中,这是因为csv文件的第一行和最后两行格式与文件的中间内容不同。
因此,我所做的是将csv文件作为字符串打开,解析字符串的内容,然后使用read_csv获取数据帧。
import io
import pandas as pd
file = open(f'{file_path}/{file_name}', 'r')
content = file.read()
# change new line character from '\r\n' to '\n'
lines = content.replace('\r', '').split('\n')
# Remove the first and last 2 lines of the file
# StringIO can be considered as a file stored in memory
df = pd.read_csv(StringIO("\n".join(lines[2:-2])), header=None)
我相信解决方案,
,engine='python'
, error_bad_lines = False
如果它是虚拟列并且你想要删除它,这将是很好的。 在我的例子中,第二行确实有更多的列,我希望这些列被积分,并且有列数= MAX(列)。
请参考下面我无法阅读的解决方案:
try:
df_data = pd.read_csv(PATH, header = bl_header, sep = str_sep)
except pd.errors.ParserError as err:
str_find = 'saw '
int_position = int(str(err).find(str_find)) + len(str_find)
str_nbCol = str(err)[int_position:]
l_col = range(int(str_nbCol))
df_data = pd.read_csv(PATH, header = bl_header, sep = str_sep, names = l_col)