我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。

谢谢!


当前回答

有很多有效的答案。又多了一个。 从sklearn。交叉验证导入train_test_split

#gets a random 80% of the entire set
X_train = X.sample(frac=0.8, random_state=1)
#gets the left out portion of the dataset
X_test = X.loc[~df_model.index.isin(X_train.index)]

其他回答

我认为你还需要一个副本,而不是一个切片的数据框架,如果你想以后添加列。

msk = np.random.rand(len(df)) < 0.8
train, test = df[msk].copy(deep = True), df[~msk].copy(deep = True)
shuffle = np.random.permutation(len(df))
test_size = int(len(df) * 0.2)
test_aux = shuffle[:test_size]
train_aux = shuffle[test_size:]
TRAIN_DF =df.iloc[train_aux]
TEST_DF = df.iloc[test_aux]

在我的例子中,我想用特定的数字分割训练、测试和开发中的数据帧。我在这里分享我的解决方案

首先,为数据帧分配一个唯一的id(如果已经不存在的话)

import uuid
df['id'] = [uuid.uuid4() for i in range(len(df))]

以下是我的分割数字:

train = 120765
test  = 4134
dev   = 2816

分裂函数

def df_split(df, n):
    
    first  = df.sample(n)
    second = df[~df.id.isin(list(first['id']))]
    first.reset_index(drop=True, inplace = True)
    second.reset_index(drop=True, inplace = True)
    return first, second

现在分成培训,测试,开发

train, test = df_split(df, 120765)
test, dev   = df_split(test, 4134)

示例方法选择数据的一部分,您可以先通过传递种子值来打乱数据。

train = df.sample(frac=0.8, random_state=42)

对于测试集,您可以删除通过train DF索引的行,然后重置新DF的索引。

test = df.drop(train_data.index).reset_index(drop=True)

如果你希望有一个数据帧和两个数据帧(不是numpy数组),这应该可以做到:

def split_data(df, train_perc = 0.8):

   df['train'] = np.random.rand(len(df)) < train_perc

   train = df[df.train == 1]

   test = df[df.train == 0]

   split_data ={'train': train, 'test': test}

   return split_data