我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。
谢谢!
我有一个数据框架形式的相当大的数据集,我想知道我如何能够将数据框架分成两个随机样本(80%和20%)进行训练和测试。
谢谢!
当前回答
可以使用~(波浪符)排除使用df.sample()采样的行,让pandas单独处理索引的采样和过滤,以获得两个集。
train_df = df.sample(frac=0.8, random_state=100)
test_df = df[~df.index.isin(train_df.index)]
其他回答
对我来说,更优雅一点的方法是创建一个随机列,然后按它进行分割,这样我们就可以得到一个符合我们需求的随机分割。
def split_df(df, p=[0.8, 0.2]):
import numpy as np
df["rand"]=np.random.choice(len(p), len(df), p=p)
r = [df[df["rand"]==val] for val in df["rand"].unique()]
return r
你可以使用下面的代码来创建测试和训练样本:
from sklearn.model_selection import train_test_split
trainingSet, testSet = train_test_split(df, test_size=0.2)
测试大小可以根据您想要放入测试和训练数据集中的数据百分比而变化。
Scikit Learn的train_test_split就是一个很好的例子。它将拆分numpy数组和数据框架。
from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.2)
我会用K-fold交叉验证。 它已被证明比train_test_split提供更好的结果。下面是一篇关于如何在sklearn中应用它的文章,来自文档本身:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
我认为你还需要一个副本,而不是一个切片的数据框架,如果你想以后添加列。
msk = np.random.rand(len(df)) < 0.8
train, test = df[msk].copy(deep = True), df[~msk].copy(deep = True)