更新:到目前为止表现最好的算法是这个。


这个问题探讨了在实时时间序列数据中检测突然峰值的稳健算法。

考虑以下示例数据:

这个数据的例子是Matlab格式的(但这个问题不是关于语言,而是关于算法):

p = [1 1 1.1 1 0.9 1 1 1.1 1 0.9 1 1.1 1 1 0.9 1 1 1.1 1 1 1 1 1.1 0.9 1 1.1 1 1 0.9, ...
     1 1.1 1 1 1.1 1 0.8 0.9 1 1.2 0.9 1 1 1.1 1.2 1 1.5 1 3 2 5 3 2 1 1 1 0.9 1 1, ... 
     3 2.6 4 3 3.2 2 1 1 0.8 4 4 2 2.5 1 1 1];

你可以清楚地看到有三个大峰和一些小峰。这个数据集是问题所涉及的时间序列数据集类的一个特定示例。这类数据集有两个一般特征:

有一种具有一般平均值的基本噪声 有很大的“峰值”或“更高的数据点”明显偏离噪声。

让我们假设以下情况:

峰的宽度不能事先确定 峰的高度明显偏离其他值 算法实时更新(因此每个新数据点都会更新)

对于这种情况,需要构造一个触发信号的边值。但是,边界值不能是静态的,必须通过算法实时确定。


我的问题是:什么是实时计算这些阈值的好算法?有没有针对这种情况的特定算法?最著名的算法是什么?


健壮的算法或有用的见解都受到高度赞赏。(可以用任何语言回答:这是关于算法的)


当前回答

假设你的数据来自传感器(所以算法不可能知道未来的任何事情),

我做了这个算法,它与我在自己的项目中获得的数据非常好。

该算法有2个参数:灵敏度和窗口。

最后,只需一行代码就可以得到你的结果:

detected=data.map((a, b, c) => (a > 0) ? c[b] ** 4 * c[b - 1] ** 3 : -0).map((a, b, c) => a > Math.max(...c.slice(2)) / sensitivity).map((a, b, c) => (b > dwindow) && c.slice(b - dwindow, b).indexOf(a) == -1);

因为我是程序员而不是数学家,所以我不能更好地解释它。但我相信有人可以。

sensitivity = 20; dwindow = 4; data = [1., 1., 1., 1., 1., 1., 1., 1.1, 1., 0.8, 0.9, 1., 1.2, 0.9, 1., 1., 1.1, 1.2, 1., 1.5, 1., 3., 2., 5., 3., 2., 1., 1., 1., 0.9, 1., 1., 3., 2.6, 4., 3., 3.2, 2., 1., 1., 1., 1., 1. ]; //data = data.concat(data); //data = data.concat(data); var data1 = [{ name: 'original source', y: data }]; Plotly.newPlot('stage1', data1, { title: 'Sensor data', yaxis: { title: 'signal' } }); filtered = data.map((a, b, c) => (a > 0) ? c[b] ** 4 * c[b - 1] ** 3 : -0); var data2 = [{ name: 'filtered source', y: filtered }]; Plotly.newPlot('stage2', data2, { title: 'Filtered data<br>aₙ = aₙ⁴ * aₙ₋₁³', yaxis: { title: 'signal' } }); dwindow = 6; k = dwindow; detected = filtered.map((a, b, c) => a > Math.max(...c.slice(2)) / sensitivity).map((a, b, c) => (b > k) && c.slice(b - k, b).indexOf(a) == -1) var data3 = [{ name: 'detected peaks', y: detected }]; Plotly.newPlot('stage3', data3, { title: 'Window 6', yaxis: { title: 'signal' } }); dwindow = 10; k = dwindow; detected = filtered.map((a, b, c) => a > Math.max(...c.slice(2)) / 20).map((a, b, c) => (b > k) && c.slice(b - k, b).indexOf(a) == -1) var data4 = [{ name: 'detected peaks', y: detected }]; Plotly.newPlot('stage4', data4, { title: 'Window 10', yaxis: { title: 'signal' } }); <script src="https://cdn.jsdelivr.net/npm/plotly.js@2.16.5/dist/plotly.min.js"></script> <div id="stage1"></div> <div id="stage2"></div> <div id="stage3"></div> <div id="stage4"></div>

其他回答

使用实时流的Python版本(不会在每个新数据点到达时重新计算所有数据点)。您可能想要调整类函数返回的内容—对于我的目的,我只需要信号。

import numpy as np


class real_time_peak_detection():
    def __init__(self, array, lag, threshold, influence):
        self.y = list(array)
        self.length = len(self.y)
        self.lag = lag
        self.threshold = threshold
        self.influence = influence
        self.signals = [0] * len(self.y)
        self.filteredY = np.array(self.y).tolist()
        self.avgFilter = [0] * len(self.y)
        self.stdFilter = [0] * len(self.y)
        self.avgFilter[self.lag - 1] = np.mean(self.y[0:self.lag]).tolist()
        self.stdFilter[self.lag - 1] = np.std(self.y[0:self.lag]).tolist()

    def thresholding_algo(self, new_value):
        self.y.append(new_value)
        i = len(self.y) - 1
        self.length = len(self.y)
        if i < self.lag:
            return 0
        elif i == self.lag:
            self.signals = [0] * len(self.y)
            self.filteredY = np.array(self.y).tolist()
            self.avgFilter = [0] * len(self.y)
            self.stdFilter = [0] * len(self.y)
            self.avgFilter[self.lag] = np.mean(self.y[0:self.lag]).tolist()
            self.stdFilter[self.lag] = np.std(self.y[0:self.lag]).tolist()
            return 0

        self.signals += [0]
        self.filteredY += [0]
        self.avgFilter += [0]
        self.stdFilter += [0]

        if abs(self.y[i] - self.avgFilter[i - 1]) > (self.threshold * self.stdFilter[i - 1]):

            if self.y[i] > self.avgFilter[i - 1]:
                self.signals[i] = 1
            else:
                self.signals[i] = -1

            self.filteredY[i] = self.influence * self.y[i] + \
                (1 - self.influence) * self.filteredY[i - 1]
            self.avgFilter[i] = np.mean(self.filteredY[(i - self.lag):i])
            self.stdFilter[i] = np.std(self.filteredY[(i - self.lag):i])
        else:
            self.signals[i] = 0
            self.filteredY[i] = self.y[i]
            self.avgFilter[i] = np.mean(self.filteredY[(i - self.lag):i])
            self.stdFilter[i] = np.std(self.filteredY[(i - self.lag):i])

        return self.signals[i]

这是一个修改后的Fortran版本的z-score算法。 它是专门针对频率空间中传递函数的峰值(共振)检测进行修改的(每个更改在代码中都有一个小注释)。

如果在输入向量的下界附近存在共振,则第一个修改会向用户发出警告,该共振由高于某个阈值的标准偏差表示(在本例中为10%)。这仅仅意味着信号不够平坦,不足以使检测正确地初始化滤波器。

第二种修改是只将峰值的最大值添加到已找到的峰值中。这是通过将每个发现的峰值与其(滞后)前辈及其(滞后)后继者的大小进行比较来达到的。

第三个变化是尊重共振峰通常在共振频率周围表现出某种形式的对称性。因此,围绕当前数据点对称地计算平均值和std是很自然的(而不仅仅是针对之前的数据点)。这将导致更好的峰值检测行为。

这些修改的效果是,整个信号必须事先被函数知道,这是共振检测的通常情况(类似于Jean-Paul的Matlab示例,其中数据点是动态生成的,这是行不通的)。

function PeakDetect(y,lag,threshold, influence)
    implicit none
    ! Declaring part
    real, dimension(:), intent(in) :: y
    integer, dimension(size(y)) :: PeakDetect
    real, dimension(size(y)) :: filteredY, avgFilter, stdFilter
    integer :: lag, ii
    real :: threshold, influence

    ! Executing part
    PeakDetect = 0
    filteredY = 0.0
    filteredY(1:lag+1) = y(1:lag+1)
    avgFilter = 0.0
    avgFilter(lag+1) = mean(y(1:2*lag+1))
    stdFilter = 0.0
    stdFilter(lag+1) = std(y(1:2*lag+1))

    if (stdFilter(lag+1)/avgFilter(lag+1)>0.1) then ! If the coefficient of variation exceeds 10%, the signal is too uneven at the start, possibly because of a peak.
        write(unit=*,fmt=1001)
1001        format(1X,'Warning: Peak detection might have failed, as there may be a peak at the edge of the frequency range.',/)
    end if
    do ii = lag+2, size(y)
        if (abs(y(ii) - avgFilter(ii-1)) > threshold * stdFilter(ii-1)) then
            ! Find only the largest outstanding value which is only the one greater than its predecessor and its successor
            if (y(ii) > avgFilter(ii-1) .AND. y(ii) > y(ii-1) .AND. y(ii) > y(ii+1)) then
                PeakDetect(ii) = 1
            end if
            filteredY(ii) = influence * y(ii) + (1 - influence) * filteredY(ii-1)
        else
            filteredY(ii) = y(ii)
        end if
        ! Modified with respect to the original code. Mean and standard deviation are calculted symmetrically around the current point
        avgFilter(ii) = mean(filteredY(ii-lag:ii+lag))
        stdFilter(ii) = std(filteredY(ii-lag:ii+lag))
    end do
end function PeakDetect

real function mean(y)
    !> @brief Calculates the mean of vector y
    implicit none
    ! Declaring part
    real, dimension(:), intent(in) :: y
    integer :: N
    ! Executing part
    N = max(1,size(y))
    mean = sum(y)/N
end function mean

real function std(y)
    !> @brief Calculates the standard deviation of vector y
    implicit none
    ! Declaring part
    real, dimension(:), intent(in) :: y
    integer :: N
    ! Executing part
    N = max(1,size(y))
    std = sqrt((N*dot_product(y,y) - sum(y)**2) / (N*(N-1)))
end function std

对于我的应用程序,算法的工作就像一个魅力!

下面是这个答案的平滑z-score算法的c++实现

std::vector<int> smoothedZScore(std::vector<float> input)
{   
    //lag 5 for the smoothing functions
    int lag = 5;
    //3.5 standard deviations for signal
    float threshold = 3.5;
    //between 0 and 1, where 1 is normal influence, 0.5 is half
    float influence = .5;

    if (input.size() <= lag + 2)
    {
        std::vector<int> emptyVec;
        return emptyVec;
    }

    //Initialise variables
    std::vector<int> signals(input.size(), 0.0);
    std::vector<float> filteredY(input.size(), 0.0);
    std::vector<float> avgFilter(input.size(), 0.0);
    std::vector<float> stdFilter(input.size(), 0.0);
    std::vector<float> subVecStart(input.begin(), input.begin() + lag);
    avgFilter[lag] = mean(subVecStart);
    stdFilter[lag] = stdDev(subVecStart);

    for (size_t i = lag + 1; i < input.size(); i++)
    {
        if (std::abs(input[i] - avgFilter[i - 1]) > threshold * stdFilter[i - 1])
        {
            if (input[i] > avgFilter[i - 1])
            {
                signals[i] = 1; //# Positive signal
            }
            else
            {
                signals[i] = -1; //# Negative signal
            }
            //Make influence lower
            filteredY[i] = influence* input[i] + (1 - influence) * filteredY[i - 1];
        }
        else
        {
            signals[i] = 0; //# No signal
            filteredY[i] = input[i];
        }
        //Adjust the filters
        std::vector<float> subVec(filteredY.begin() + i - lag, filteredY.begin() + i);
        avgFilter[i] = mean(subVec);
        stdFilter[i] = stdDev(subVec);
    }
    return signals;
}

一种方法是根据以下观察来检测峰:

时间t是一个峰值(y (t) > y (t - 1)) & & ((t) > y (t + 1))

它通过等待上升趋势结束来避免误报。它并不完全是“实时”的,因为它会比峰值差一个dt。灵敏度可以通过要求比较的裕度来控制。在噪声检测和时延检测之间存在一种折衷。 您可以通过添加更多参数来丰富模型:

峰如果y (y (t) - (t-dt) > m) && (y (t) - y (t + dt) > m)

dt和m是控制灵敏度和延时的参数

这是你用上述算法得到的结果:

下面是在python中重现图的代码:

import numpy as np
import matplotlib.pyplot as plt
input = np.array([ 1. ,  1. ,  1. ,  1. ,  1. ,  1. ,  1. ,  1.1,  1. ,  0.8,  0.9,
    1. ,  1.2,  0.9,  1. ,  1. ,  1.1,  1.2,  1. ,  1.5,  1. ,  3. ,
    2. ,  5. ,  3. ,  2. ,  1. ,  1. ,  1. ,  0.9,  1. ,  1. ,  3. ,
    2.6,  4. ,  3. ,  3.2,  2. ,  1. ,  1. ,  1. ,  1. ,  1. ])
signal = (input > np.roll(input,1)) & (input > np.roll(input,-1))
plt.plot(input)
plt.plot(signal.nonzero()[0], input[signal], 'ro')
plt.show()

通过设置m = 0.5,你可以得到一个更清晰的信号,只有一个假阳性:

如果边界值或其他标准取决于未来值,那么唯一的解决方案(没有时间机器,或其他关于未来值的知识)是推迟任何决定,直到有足够的未来值。如果你想要一个高于均值的水平,例如,20点,那么你必须等到你至少有19点才能做出任何峰值决策,否则下一个新点可能会完全超过你19点之前的阈值。

Added: If the statistical distribution of the peak heights could be heavy tailed, instead of Uniform or Gaussian, then you may need to wait until you see several thousand peaks before it starts to become unlikely that a hidden Pareto distribution won't produce a peak many times larger than any you currently have seen before or have in your current plot. Unless you somehow know in advance that the very next point can't be 1e20, it could appear, which after rescaling your plot's Y dimension, would be flat up until that point.