在R中,mean()和median()是标准函数,它们执行您所期望的功能。Mode()告诉您对象的内部存储模式,而不是参数中出现次数最多的值。但是是否存在一个标准库函数来实现向量(或列表)的统计模式?
当前回答
CRAN上现在可用的折叠包中的通用函数fmode实现了基于索引哈希的基于c++的模式。它比上述任何一种方法都要快得多。它提供了向量、矩阵、data.frames和dplyr分组tibbles的方法。语法:
libary(collapse)
fmode(x, g = NULL, w = NULL, ...)
其中x可以是上述对象之一,g提供一个可选的分组向量或分组向量列表(用于分组模式计算,也在c++中执行),w(可选)提供一个数值权重向量。在分组tibble方法中,没有g参数,您可以执行data %>% group_by(idvar) %>% fmode。
其他回答
可以尝试以下功能:
将数值转换为因子 使用summary()获取频率表 返回模式为频率最大的索引 转换因子回到数字,即使有超过1个模式,这个函数工作得很好!
mode <- function(x){
y <- as.factor(x)
freq <- summary(y)
mode <- names(freq)[freq[names(freq)] == max(freq)]
as.numeric(mode)
}
还有一个解决方案,适用于数字和字符/因子数据:
Mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
在我的小机器上,它可以在大约半秒内生成并找到一个10m整数向量的模式。
如果您的数据集可能有多种模式,上述解决方案采用与which相同的方法。Max,并返回模式集中第一个出现的值。要返回所有模式,使用这个变体(来自评论中的@digEmAll):
Modes <- function(x) {
ux <- unique(x)
tab <- tabulate(match(x, ux))
ux[tab == max(tab)]
}
抱歉,我可能把它理解得太简单了,但这不是可以工作的吗?(我的机器上的1E6值在1.3秒内):
t0 <- Sys.time()
summary(as.factor(round(rnorm(1e6), 2)))[1]
Sys.time()-t0
你只需要用你的向量替换“round(rnorm(1e6),2)”。
我发现Ken Williams上面的帖子很棒,我添加了几行来解释NA值,并使其成为一个函数。
Mode <- function(x, na.rm = FALSE) {
if(na.rm){
x = x[!is.na(x)]
}
ux <- unique(x)
return(ux[which.max(tabulate(match(x, ux)))])
}
另一个可能的解决方案:
Mode <- function(x) {
if (is.numeric(x)) {
x_table <- table(x)
return(as.numeric(names(x_table)[which.max(x_table)]))
}
}
用法:
set.seed(100)
v <- sample(x = 1:100, size = 1000000, replace = TRUE)
system.time(Mode(v))
输出:
user system elapsed
0.32 0.00 0.31