如果你有一个圆心(center_x, center_y)和半径为半径的圆,如何测试一个坐标为(x, y)的给定点是否在圆内?
当前回答
计算距离
D = Math.Sqrt(Math.Pow(center_x - x, 2) + Math.Pow(center_y - y, 2))
return D <= radius
这是用c#写的……转换为python中使用…
其他回答
进入3D世界,如果你想检查一个3D点是否在单位球面上,你最终会做类似的事情。在2D中工作所需要的就是使用2D矢量运算。
public static bool Intersects(Vector3 point, Vector3 center, float radius)
{
Vector3 displacementToCenter = point - center;
float radiusSqr = radius * radius;
bool intersects = displacementToCenter.magnitude < radiusSqr;
return intersects;
}
一般来说,x和y必须满足(x - center_x)²+ (y - center_y)²< radius²。
请注意,满足上式<的点被==替换为圆上的点,满足上式<的点被>替换为圆外的点。
boolean isInRectangle(double centerX, double centerY, double radius,
double x, double y)
{
return x >= centerX - radius && x <= centerX + radius &&
y >= centerY - radius && y <= centerY + radius;
}
//test if coordinate (x, y) is within a radius from coordinate (center_x, center_y)
public boolean isPointInCircle(double centerX, double centerY,
double radius, double x, double y)
{
if(isInRectangle(centerX, centerY, radius, x, y))
{
double dx = centerX - x;
double dy = centerY - y;
dx *= dx;
dy *= dy;
double distanceSquared = dx + dy;
double radiusSquared = radius * radius;
return distanceSquared <= radiusSquared;
}
return false;
}
这样效率更高,可读性更强。它避免了昂贵的平方根运算。我还添加了一个检查,以确定点是否在圆的边界矩形内。
矩形检查是不必要的,除非有许多点或许多圆。如果大多数点都在圆圈内,边框检查实际上会使事情变慢!
像往常一样,一定要考虑您的用例。
计算距离
D = Math.Sqrt(Math.Pow(center_x - x, 2) + Math.Pow(center_y - y, 2))
return D <= radius
这是用c#写的……转换为python中使用…
PHP
if ((($x - $center_x) ** 2 + ($y - $center_y) ** 2) <= $radius **2) {
return true; // Inside
} else {
return false; // Outside
}