在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?


当前回答

我尽量简单点。

监督学习:在这种学习技术中,我们得到一个数据集,系统已经知道该数据集的正确输出。这里,我们的系统通过预测自己的值来学习。然后,它通过使用代价函数来检查其预测与实际输出的接近程度,从而进行准确性检查。

无监督学习:在这种方法中,我们很少或根本不知道我们的结果是什么。因此,我们从不知道变量影响的数据中推导出结构。 我们根据数据中变量之间的关系对数据进行聚类,从而形成结构。 在这里,我们没有基于预测的反馈。

其他回答

在监督学习中,为输入x提供预期结果y(即,当输入x时模型应该产生的输出),这通常被称为对应输入x的“类”(或“标签”)。

在无监督学习中,不提供示例x的“类”。因此,无监督学习可以被认为是在未标记的数据集中寻找“隐藏结构”。

监督学习的方法包括:

分类(1R、朴素贝叶斯、决策树学习算法等) 如ID3 CART,等等) 数值预测

无监督学习的方法包括:

聚类(k -均值,层次聚类) 关联规则学习

监督式学习

你有输入x和目标输出t。所以你训练算法泛化到缺失的部分。它被监督是因为目标是给定的。你是管理员,告诉算法:对于例子x,你应该输出t!

无监督学习

虽然分割、聚类和压缩通常是按照这个方向计算的,但我很难给出一个好的定义。

让我们以自动编码器压缩为例。当你只有给定的输入x时,人类工程师是如何告诉算法目标也是x的。所以在某种意义上,这与监督学习没有什么不同。

对于聚类和分割,我不太确定它是否真的符合机器学习的定义(见其他问题)。

监督式学习: 假设一个孩子去了幼儿园。这里老师给他看了3个玩具——房子,球和汽车。现在老师给了他10个玩具。 他会根据他以前的经验把它们分为房子,球和汽车3个盒子。 因此,孩子首先是由老师监督,因为他们在几组比赛中答对了答案。然后用不知名的玩具对他进行测试。

无监督学习: 还是幼儿园的例子。给一个孩子10个玩具。他被告知要分割类似的部分。 因此,根据形状、大小、颜色、功能等特征,他会尝试将A、B、C分成3组,并将它们分组。

监理这个词的意思是你给机器提供监督/指令,帮助它找到答案。一旦它学会指令,就可以很容易地预测新的情况。

无监督意味着没有监督或指示如何找到答案/标签,机器将利用它的智能在我们的数据中找到一些模式。在这里,它不会进行预测,它只会尝试寻找具有相似数据的集群。

监督式学习

训练数据包括输入向量的示例及其相应的目标向量的应用被称为监督学习问题。

无监督学习

在其他模式识别问题中,训练数据由一组输入向量x组成,没有任何对应的目标值。这种无监督学习问题的目标可能是在数据中发现相似的例子组,在这里它被称为聚类

模式识别和机器学习(Bishop, 2006)

机器学习是一个让机器模仿人类行为的领域。

你训练机器就像训练婴儿一样。人类学习、识别特征、识别模式并训练自己的方式,就像你通过输入各种特征的数据来训练机器一样。机器算法识别数据中的模式,并将其分类到特定的类别。

机器学习大致分为两类,有监督学习和无监督学习。

监督学习是一个概念,你有相应的目标值(输出)的输入向量/数据。另一方面,无监督学习的概念是只有输入向量/数据,没有任何相应的目标值。

监督学习的一个例子是手写数字识别,其中有对应数字[0-9]的数字图像,而非监督学习的一个例子是根据购买行为对客户进行分组。