在人工智能和机器学习方面,监督学习和无监督学习的区别是什么? 你能举个例子简单地解释一下吗?


当前回答

监督式学习

训练数据包括输入向量的示例及其相应的目标向量的应用被称为监督学习问题。

无监督学习

在其他模式识别问题中,训练数据由一组输入向量x组成,没有任何对应的目标值。这种无监督学习问题的目标可能是在数据中发现相似的例子组,在这里它被称为聚类

模式识别和机器学习(Bishop, 2006)

其他回答

监督式学习

训练数据包括输入向量的示例及其相应的目标向量的应用被称为监督学习问题。

无监督学习

在其他模式识别问题中,训练数据由一组输入向量x组成,没有任何对应的目标值。这种无监督学习问题的目标可能是在数据中发现相似的例子组,在这里它被称为聚类

模式识别和机器学习(Bishop, 2006)

监督学习是指你为算法提供的数据被“标记”或“标记”,以帮助你的逻辑做出决策。

示例:贝叶斯垃圾邮件过滤,您必须将一个项目标记为垃圾邮件以优化结果。

无监督学习是一种试图在原始数据之外没有任何外部输入的情况下找到相关性的算法。

例如:数据挖掘聚类算法。

监督学习,给出数据和答案。

给定被标记为垃圾邮件或非垃圾邮件的电子邮件,学习垃圾邮件过滤器。

给定一个被诊断为患有或没有糖尿病的患者的数据集,学习将新患者分类为患有或没有糖尿病。

无监督学习,给出没有答案的数据,让计算机对事物进行分组。

给定一组在网上找到的新闻文章,将它们分成一组关于同一故事的文章。

给定自定义数据数据库,自动发现细分市场,并将客户分组到不同的细分市场。

参考

在监督学习中,为输入x提供预期结果y(即,当输入x时模型应该产生的输出),这通常被称为对应输入x的“类”(或“标签”)。

在无监督学习中,不提供示例x的“类”。因此,无监督学习可以被认为是在未标记的数据集中寻找“隐藏结构”。

监督学习的方法包括:

分类(1R、朴素贝叶斯、决策树学习算法等) 如ID3 CART,等等) 数值预测

无监督学习的方法包括:

聚类(k -均值,层次聚类) 关联规则学习

监督式学习

你有输入x和目标输出t。所以你训练算法泛化到缺失的部分。它被监督是因为目标是给定的。你是管理员,告诉算法:对于例子x,你应该输出t!

无监督学习

虽然分割、聚类和压缩通常是按照这个方向计算的,但我很难给出一个好的定义。

让我们以自动编码器压缩为例。当你只有给定的输入x时,人类工程师是如何告诉算法目标也是x的。所以在某种意义上,这与监督学习没有什么不同。

对于聚类和分割,我不太确定它是否真的符合机器学习的定义(见其他问题)。