我发现在《吃豆人》中有很多关于幽灵AI的参考,但没有一个提到当幽灵被《吃豆人》吃掉后,眼睛是如何找到中央幽灵洞的。

在我的实现中,我实现了一个简单但糟糕的解决方案。我只是在每个角落都用硬编码标明了应该往哪个方向走。

有没有更好的/最好的解决办法?也许是适用于不同关卡设计的通用设计?


当前回答

最初的《吃豆人》并没有使用寻径或花哨的AI。它只是让玩家觉得游戏比实际更有深度,但实际上它是随机的。正如Ian Millington和John Funge在《ai Intelligence for Games》中所述。

Not sure if it's true or not, but it makes a lot of sense to me. Honestly, I don't see these behaviors that people are talking about. Red/Blinky for ex is not following the player at all times, as they say. Nobody seems to be consistently following the player, on purpose. The chance that they will follow you looks random to me. And it's just very tempting to see behavior in randomness, especially when the chances of getting chased are very high, with 4 enemies and very limited turning options, in a small space. At least in its initial implementation, the game was extremely simple. Check out the book, it's in one of the first chapters.

其他回答

假设你已经有了追逐吃豆人所需的逻辑,为什么不重用它呢?只要改变目标。这似乎比尝试使用完全相同的逻辑创建一个全新的例程要少得多。

下面是ammoQ的洪水填充想法的模拟和伪代码。

queue q
enqueue q, ghost_origin
set visited

while q has squares
   p <= dequeue q
   for each square s adjacent to p
      if ( s not in visited ) then
         add s to visited
         s.returndirection <= direction from s to p
         enqueue q, s
      end if
   next
 next

它的思想是宽度优先搜索,所以每次你遇到一个新的相邻正方形s,最好的路径是经过p。我相信是O(N)。

这是我能找到的关于它是如何工作的最好的资料。

http://gameai.com/wiki/index.php?title=Pac-Man#Respawn 当幽灵被杀死时,它们脱离实体的眼睛会回到最初的位置。这可以通过将幽灵的目标贴图设置到该位置来实现。导航使用相同的规则。

这是有道理的。也许不是世界上最有效的方法但这是一种很好的方法不用担心另一种状态或者沿着这些线你只需要改变目标。

附注:我没有意识到那些吃豆人程序员有多棒,他们基本上是在非常小的空间和非常有限的内存中创建了一个完整的消息系统……太神奇了。

最初的《吃豆人》并没有使用寻径或花哨的AI。它只是让玩家觉得游戏比实际更有深度,但实际上它是随机的。正如Ian Millington和John Funge在《ai Intelligence for Games》中所述。

Not sure if it's true or not, but it makes a lot of sense to me. Honestly, I don't see these behaviors that people are talking about. Red/Blinky for ex is not following the player at all times, as they say. Nobody seems to be consistently following the player, on purpose. The chance that they will follow you looks random to me. And it's just very tempting to see behavior in randomness, especially when the chances of getting chased are very high, with 4 enemies and very limited turning options, in a small space. At least in its initial implementation, the game was extremely simple. Check out the book, it's in one of the first chapters.

如果每个正方形都有一个到中心的距离值呢?这样,对于每个给定的正方形,你可以在所有可能的方向上得到相邻正方形的值。你选择最小值的正方形,然后移动到那个正方形。

数值将使用任何可用的算法预先计算出来。