例如,给定列表['one', 'two', 'one'],算法应该返回True,而给定['one', 'two', 'three']则应该返回False。


当前回答

一个更简单的解决方案如下。只需用pandas . replicated()方法检查True/False,然后取sum。请参阅pandas. series . replicated - pandas 0.24.1文档

import pandas as pd

def has_duplicated(l):
    return pd.Series(l).duplicated().sum() > 0

print(has_duplicated(['one', 'two', 'one']))
# True
print(has_duplicated(['one', 'two', 'three']))
# False

其他回答

如果列表包含不可哈希的项,您可以使用Alex Martelli的解决方案,但使用列表而不是集合,尽管它对于较大的输入较慢:O(N^2)。

def has_duplicates(iterable):
    seen = []
    for x in iterable:
        if x in seen:
            return True
        seen.append(x)
    return False

我发现这是最好的性能,因为当它发现第一个复制时,它会短路操作,那么这个算法的时间和空间复杂度为O(n),其中n是列表的长度:

def has_duplicated_elements(iterable):
    """ Given an `iterable`, return True if there are duplicated entries. """
    clean_elements_set = set()
    clean_elements_set_add = clean_elements_set.add

    for possible_duplicate_element in iterable:

        if possible_duplicate_element in clean_elements_set:
            return True

        else:
            clean_elements_set_add( possible_duplicate_element )

    return False

我真的不知道布景的幕后是做什么的,所以我只想让它简单。

def dupes(num_list):
    unique = []
    dupes = []
    for i in num_list:
        if i not in unique:
            unique.append(i)
        else:
            dupes.append(i)
    if len(dupes) != 0:
        return False
    else:
        return True

另一个解决方案是使用切片,它也适用于字符串和其他可枚举的东西。

def has_duplicates(x):
    for idx, item in enumerate(x):
        if item in x[(idx + 1):]:
            return True
    return False


>>> has_duplicates(["a", "b", "c"])
False
>>> has_duplicates(["a", "b", "b", "c"])
True
>>> has_duplicates("abc")
False
>>> has_duplicates("abbc")
True

一个更简单的解决方案如下。只需用pandas . replicated()方法检查True/False,然后取sum。请参阅pandas. series . replicated - pandas 0.24.1文档

import pandas as pd

def has_duplicated(l):
    return pd.Series(l).duplicated().sum() > 0

print(has_duplicated(['one', 'two', 'one']))
# True
print(has_duplicated(['one', 'two', 'three']))
# False