是的,我知道这个主题之前已经被讨论过了:
Python成语链(扁平化)有限迭代对象的无限迭代?
在Python中扁平化一个浅列表
理解平展一个序列的序列吗?
我如何从列表的列表中创建一个平面列表?
但据我所知,所有的解决方案,除了一个,在像[[[1,2,3],[4,5]],6]这样的列表上失败,其中期望的输出是[1,2,3,4,5,6](或者更好,一个迭代器)。
我看到的唯一解决方案,适用于任意嵌套是在这个问题:
def flatten(x):
result = []
for el in x:
if hasattr(el, "__iter__") and not isinstance(el, basestring):
result.extend(flatten(el))
else:
result.append(el)
return result
这是最好的方法吗?我是不是忽略了什么?任何问题吗?
你可以使用第三方包iteration_utilities中的deepflatten:
>>> from iteration_utilities import deepflatten
>>> L = [[[1, 2, 3], [4, 5]], 6]
>>> list(deepflatten(L))
[1, 2, 3, 4, 5, 6]
>>> list(deepflatten(L, types=list)) # only flatten "inner" lists
[1, 2, 3, 4, 5, 6]
它是一个迭代器,所以你需要迭代它(例如用列表包装它或在循环中使用它)。在内部,它使用迭代方法而不是递归方法,并且它是作为C扩展编写的,因此它可以比纯python方法更快:
>>> %timeit list(deepflatten(L))
12.6 µs ± 298 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
>>> %timeit list(deepflatten(L, types=list))
8.7 µs ± 139 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
>>> %timeit list(flatten(L)) # Cristian - Python 3.x approach from https://stackoverflow.com/a/2158532/5393381
86.4 µs ± 4.42 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
>>> %timeit list(flatten(L)) # Josh Lee - https://stackoverflow.com/a/2158522/5393381
107 µs ± 2.99 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
>>> %timeit list(genflat(L, list)) # Alex Martelli - https://stackoverflow.com/a/2159079/5393381
23.1 µs ± 710 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
我是iteration_utilities库的作者。
我们也可以使用python的'type'函数。当迭代列表时,我们检查项是否为列表。如果不是,我们“追加”它,否则我们“扩展”它。这里是一个示例代码-
l=[1,2,[3,4],5,[6,7,8]]
x=[]
for i in l:
if type(i) is list:
x.extend(i)
else:
x.append(i)
print x
输出:
[1, 2, 3, 4, 5, 6, 7, 8]
要了解更多关于append()和extend()的信息,请访问这个网站:
https://docs.python.org/2/tutorial/datastructures.html
你可以使用第三方包iteration_utilities中的deepflatten:
>>> from iteration_utilities import deepflatten
>>> L = [[[1, 2, 3], [4, 5]], 6]
>>> list(deepflatten(L))
[1, 2, 3, 4, 5, 6]
>>> list(deepflatten(L, types=list)) # only flatten "inner" lists
[1, 2, 3, 4, 5, 6]
它是一个迭代器,所以你需要迭代它(例如用列表包装它或在循环中使用它)。在内部,它使用迭代方法而不是递归方法,并且它是作为C扩展编写的,因此它可以比纯python方法更快:
>>> %timeit list(deepflatten(L))
12.6 µs ± 298 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
>>> %timeit list(deepflatten(L, types=list))
8.7 µs ± 139 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
>>> %timeit list(flatten(L)) # Cristian - Python 3.x approach from https://stackoverflow.com/a/2158532/5393381
86.4 µs ± 4.42 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
>>> %timeit list(flatten(L)) # Josh Lee - https://stackoverflow.com/a/2158522/5393381
107 µs ± 2.99 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
>>> %timeit list(genflat(L, list)) # Alex Martelli - https://stackoverflow.com/a/2159079/5393381
23.1 µs ± 710 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
我是iteration_utilities库的作者。