我如何在MongoDB中执行SQL Join等效?

例如,假设你有两个集合(用户和评论),我想拉pid=444的所有评论以及每个评论的用户信息。

comments
  { uid:12345, pid:444, comment="blah" }
  { uid:12345, pid:888, comment="asdf" }
  { uid:99999, pid:444, comment="qwer" }

users
  { uid:12345, name:"john" }
  { uid:99999, name:"mia"  }

是否有一种方法可以一次性提取具有特定字段的所有评论(例如. ...find({pid:444}))和与每个评论相关的用户信息?

目前,我首先获取符合条件的注释,然后找出结果集中的所有uid,获取用户对象,并将它们与注释的结果合并。看来我做错了。


当前回答

playORM可以为您使用S-SQL(可伸缩SQL),它只是添加分区,这样您就可以在分区内进行连接。

其他回答

你可以在Mongo中使用3.2版本提供的查找来连接两个集合。在您的情况下,查询将是

db.comments.aggregate({
    $lookup:{
        from:"users",
        localField:"uid",
        foreignField:"uid",
        as:"users_comments"
    }
})

或者你也可以加入关于用户,然后会有一个小的变化如下所示。

db.users.aggregate({
    $lookup:{
        from:"comments",
        localField:"uid",
        foreignField:"uid",
        as:"users_comments"
    }
})

它的工作原理与SQL中的左连接和右连接一样。

这取决于你想做什么。

目前您已经将其设置为规范化数据库,这很好,而且您的操作方式也很合适。

然而,还有其他的方法。

您可以有一个帖子集合,其中为每个帖子嵌入了评论,并引用了您可以迭代查询以获得的用户。您可以将用户名与注释一起存储,您可以将它们都存储在一个文档中。

The thing with NoSQL is it's designed for flexible schemas and very fast reading and writing. In a typical Big Data farm the database is the biggest bottleneck, you have fewer database engines than you do application and front end servers...they're more expensive but more powerful, also hard drive space is very cheap comparatively. Normalization comes from the concept of trying to save space, but it comes with a cost at making your databases perform complicated Joins and verifying the integrity of relationships, performing cascading operations. All of which saves the developers some headaches if they designed the database properly.

With NoSQL, if you accept that redundancy and storage space aren't issues because of their cost (both in processor time required to do updates and hard drive costs to store extra data), denormalizing isn't an issue (for embedded arrays that become hundreds of thousands of items it can be a performance issue, but most of the time that's not a problem). Additionally you'll have several application and front end servers for every database cluster. Have them do the heavy lifting of the joins and let the database servers stick to reading and writing.

TL;DR:你现在做的很好,还有其他的方法。查看mongodb文档的数据模型模式以获得一些很棒的示例。http://docs.mongodb.org/manual/data-modeling/

我们可以使用mongodb客户端控制台在几行中使用一个简单的函数合并/连接一个集合中的所有数据,现在我们可以执行所需的查询。 下面是一个完整的例子,

——作者:

db.authors.insert([
    {
        _id: 'a1',
        name: { first: 'orlando', last: 'becerra' },
        age: 27
    },
    {
        _id: 'a2',
        name: { first: 'mayra', last: 'sanchez' },
        age: 21
    }
]);

——类:

db.categories.insert([
    {
        _id: 'c1',
        name: 'sci-fi'
    },
    {
        _id: 'c2',
        name: 'romance'
    }
]);

——书

db.books.insert([
    {
        _id: 'b1',
        name: 'Groovy Book',
        category: 'c1',
        authors: ['a1']
    },
    {
        _id: 'b2',
        name: 'Java Book',
        category: 'c2',
        authors: ['a1','a2']
    },
]);

-图书借阅

db.lendings.insert([
    {
        _id: 'l1',
        book: 'b1',
        date: new Date('01/01/11'),
        lendingBy: 'jose'
    },
    {
        _id: 'l2',
        book: 'b1',
        date: new Date('02/02/12'),
        lendingBy: 'maria'
    }
]);

-神奇之处:

db.books.find().forEach(
    function (newBook) {
        newBook.category = db.categories.findOne( { "_id": newBook.category } );
        newBook.lendings = db.lendings.find( { "book": newBook._id  } ).toArray();
        newBook.authors = db.authors.find( { "_id": { $in: newBook.authors }  } ).toArray();
        db.booksReloaded.insert(newBook);
    }
);

-获取新的收集数据:

db.booksReloaded.find().pretty()

-回复:)

{
    "_id" : "b1",
    "name" : "Groovy Book",
    "category" : {
        "_id" : "c1",
        "name" : "sci-fi"
    },
    "authors" : [
        {
            "_id" : "a1",
            "name" : {
                "first" : "orlando",
                "last" : "becerra"
            },
            "age" : 27
        }
    ],
    "lendings" : [
        {
            "_id" : "l1",
            "book" : "b1",
            "date" : ISODate("2011-01-01T00:00:00Z"),
            "lendingBy" : "jose"
        },
        {
            "_id" : "l2",
            "book" : "b1",
            "date" : ISODate("2012-02-02T00:00:00Z"),
            "lendingBy" : "maria"
        }
    ]
}
{
    "_id" : "b2",
    "name" : "Java Book",
    "category" : {
        "_id" : "c2",
        "name" : "romance"
    },
    "authors" : [
        {
            "_id" : "a1",
            "name" : {
                "first" : "orlando",
                "last" : "becerra"
            },
            "age" : 27
        },
        {
            "_id" : "a2",
            "name" : {
                "first" : "mayra",
                "last" : "sanchez"
            },
            "age" : 21
        }
    ],
    "lendings" : [ ]
}

希望这句话能帮到你。

我们可以使用mongoDB子查询来合并两个集合。举个例子, 评论,

`db.commentss.insert([
  { uid:12345, pid:444, comment:"blah" },
  { uid:12345, pid:888, comment:"asdf" },
  { uid:99999, pid:444, comment:"qwer" }])`

用户——

db.userss.insert([
  { uid:12345, name:"john" },
  { uid:99999, name:"mia"  }])

MongoDB子查询JOIN——

`db.commentss.find().forEach(
    function (newComments) {
        newComments.userss = db.userss.find( { "uid": newComments.uid } ).toArray();
        db.newCommentUsers.insert(newComments);
    }
);`

从新生成的Collection中获取结果

db.newCommentUsers.find().pretty()

结果——

`{
    "_id" : ObjectId("5511236e29709afa03f226ef"),
    "uid" : 12345,
    "pid" : 444,
    "comment" : "blah",
    "userss" : [
        {
            "_id" : ObjectId("5511238129709afa03f226f2"),
            "uid" : 12345,
            "name" : "john"
        }
    ]
}
{
    "_id" : ObjectId("5511236e29709afa03f226f0"),
    "uid" : 12345,
    "pid" : 888,
    "comment" : "asdf",
    "userss" : [
        {
            "_id" : ObjectId("5511238129709afa03f226f2"),
            "uid" : 12345,
            "name" : "john"
        }
    ]
}
{
    "_id" : ObjectId("5511236e29709afa03f226f1"),
    "uid" : 99999,
    "pid" : 444,
    "comment" : "qwer",
    "userss" : [
        {
            "_id" : ObjectId("5511238129709afa03f226f3"),
            "uid" : 99999,
            "name" : "mia"
        }
    ]
}`

希望这能有所帮助。

查找美元(聚合)

对同一数据库中的未分片集合执行左外连接,以从“已连接”集合中筛选文档进行处理。$查找阶段向每个输入文档添加一个新的数组字段,其元素是“已加入”集合中的匹配文档。$查找阶段将这些重新塑造的文档传递给下一个阶段。 $查找阶段的语法如下:

平等的比赛

要在输入文档中的字段与" joined "集合中的文档中的字段之间执行相等匹配,$lookup stage的语法如下:

{
   $lookup:
     {
       from: <collection to join>,
       localField: <field from the input documents>,
       foreignField: <field from the documents of the "from" collection>,
       as: <output array field>
     }
}

该操作将对应于以下伪sql语句:

SELECT *, <output array field>
FROM collection
WHERE <output array field> IN (SELECT <documents as determined from the pipeline>
                               FROM <collection to join>
                               WHERE <pipeline> );

蒙哥URL