前段时间我有一次有趣的面试经历。问题一开始很简单:

Q1:我们有一个袋子,里面有数字1,2,3,…,100。每个数字恰好出现一次,所以有100个数字。现在从袋子里随机抽取一个数字。找到丢失的号码。

当然,我以前听过这个面试问题,所以我很快就回答了这个问题:

A1:嗯,1 + 2 + 3 +…+ N的和是(N+1)(N/2)(参见维基百科:等差级数的和)。当N = 100时,和是5050。 因此,如果所有的数字都在袋子里,总和将恰好是5050。因为少了一个数,总和就会小于这个数,差的就是这个数。所以我们可以在O(N)时间和O(1)空间中找到这个缺失的数。

在这一点上,我认为我做得很好,但突然间,问题发生了意想不到的转变:

这是正确的,但是如果少了两个数字,你会怎么做?

我以前从未见过/听过/考虑过这种变化,所以我很恐慌,无法回答这个问题。面试官坚持要知道我的思考过程,所以我提到,也许我们可以通过与预期产品进行比较来获得更多信息,或者在从第一次传递中收集到一些信息后再进行第二次传递,等等,但我真的只是在黑暗中拍摄,而不是真正有一个明确的解决方案的路径。

面试官试图鼓励我说,有第二个方程确实是解决问题的一种方法。在这一点上,我有点不安(因为事先不知道答案),并问这是一种通用的(阅读:“有用的”)编程技术,还是只是一个技巧/答案。

面试官的回答让我惊讶:你可以把这个技巧概括为3个缺失的数字。事实上,你可以推广它来找到k个缺失的数。

Qk:如果袋子里少了k个数字,你如何有效地找到它?

这是几个月前的事了,我还不明白这个技巧是什么。显然有一个Ω(N)的时间下限,因为我们必须扫描所有的数字至少一次,但面试官坚持认为,解决技术的时间和空间复杂度(减去O(N)次输入扫描)定义为k而不是N。

所以问题很简单:

如何解决Q2? 你会如何解决Q3? 如何求解Qk?


澄清

Generally there are N numbers from 1..N, not just 1..100. I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N. I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).

当然,你必须以O(N)为单位扫描输入,但你只能捕获少量的信息(用k而不是N定义),然后必须以某种方式找到k个缺失的数字。


当前回答

// Size of numbers
def n=100;

// A list of numbers that is missing k numbers.
def list;

// A map
def map = [:];

// Populate the map so that it contains all numbers.
for(int index=0; index<n; index++)
{
  map[index+1] = index+1;  
}

// Get size of list that is missing k numbers.
def size = list.size();

// Remove all numbers, that exists in list, from the map.
for(int index=0; index<size; index++)
{
  map.remove(list.get(index));  
}

// Content of map is missing numbers
println("Missing numbers: " + map);

其他回答

如果一个数字只出现一次,用下面的方法很容易分辨:

创建一个大小为给定数字的布尔数组boolArray;这里是100。

遍历输入数字,并根据数字值将一个元素设置为true。例如,如果找到45,则设置boolArray[45-1] = true;

这是一个O(N)运算。

然后循环遍历boolArray。如果一个元素保持为false,那么element + 1的下标就是缺失的数字。例如,如果boolArray[44]为false,我们就知道第45号丢失了。

这是O(n)运算。空间复杂度为O(1)。

所以这个解可以从一个给定的连续数集中找到任何缺失的数。

我相信我有一个O(k)时间和O(log(k)空间算法,前提是你有任意大整数的下限(x)和log2(x)函数:

你有一个k位的长整数(因此是log8(k)空间),其中你加上x^2,其中x是你在袋子里找到的下一个数字:s=1^2+2^2+…这需要O(N)时间(这对面试官来说不是问题)。最后得到j= (log2(s))这是你要找的最大的数。然后s=s-j,重复上面的步骤:

for (i = 0 ; i < k ; i++)
{
  j = floor(log2(s));
  missing[i] = j;
  s -= j;
}

现在,对于2756位的整数,通常没有floor和log2函数,而是用于double。所以呢?简单地说,对于每2个字节(或1、3、4),您可以使用这些函数来获得所需的数字,但这增加了O(N)因素的时间复杂度

我认为这不需要任何复杂的数学方程和理论。下面是一个建议的到位和O(2n)时间复杂度的解决方案:

输入表格假设:

袋子里的数字# = n

缺失数字的数量= k

袋子里的数字由长度为n的数组表示

算法的输入数组长度= n

数组中缺失的条目(从袋子中取出的数字)将被数组中第一个元素的值替换。

如。最初袋子看起来像[2,9,3,7,8,6,4,5,1,10]。 如果4被取出,value 4将变成2(数组的第一个元素)。 因此,在取出4后,袋子将看起来像[2,9,3,7,8,6,2,5,1,10]

此解决方案的关键是在遍历数组时,通过对索引处的值求负来标记访问数的INDEX。

    IEnumerable<int> GetMissingNumbers(int[] arrayOfNumbers)
    {
        List<int> missingNumbers = new List<int>();
        int arrayLength = arrayOfNumbers.Length;

        //First Pass
        for (int i = 0; i < arrayLength; i++)
        {
            int index = Math.Abs(arrayOfNumbers[i]) - 1;
            if (index > -1)
            {
                arrayOfNumbers[index] = Math.Abs(arrayOfNumbers[index]) * -1; //Marking the visited indexes
            }
        }

        //Second Pass to get missing numbers
        for (int i = 0; i < arrayLength; i++)
        {                
            //If this index is unvisited, means this is a missing number
            if (arrayOfNumbers[i] > 0)
            {
                missingNumbers.Add(i + 1);
            }
        }

        return missingNumbers;
    }

你能查一下每个号码是否都存在吗?如果是,你可以试试这个:

S =袋子中所有数字的和(S < 5050) Z =缺失数的和5050 - S

如果缺失的数字是x和y,则:

x = Z - y和 max(x) = Z - 1

所以你检查从1到max(x)的范围,并找到这个数字

有一个通用的方法来解决这样的流问题。 我们的想法是使用一些随机化,希望将k个元素“分散”到独立的子问题中,在那里我们的原始算法为我们解决了问题。该技术用于稀疏信号重建等。

创建一个大小为u = k^2的数组a。 选取任意通用哈希函数h:{1,…,n} ->{1,…,u}。(如multiply-shift) 对于1中的每一个i,…, n增加a[h(i)] += i 对于输入流中的每个数字x,减去a[h(x)] -= x。

如果所有缺失的数字都已散列到不同的bucket中,则数组的非零元素现在将包含缺失的数字。

根据通用哈希函数的定义,特定对被发送到同一桶的概率小于1/u。由于大约有k^2/2对,我们有错误概率不超过k^2/2/u=1/2。也就是说,我们成功的概率至少是50%,如果我们增加u,我们的机会就会增加。

注意,这个算法占用k^2 logn位的空间(每个数组桶需要logn位)。这与@Dimitris Andreou的答案所需要的空间相匹配(特别是多项式因式分解的空间要求,它碰巧也是随机的。) 该算法每次更新的时间也是常数,而不是幂和情况下的时间k。

事实上,通过使用评论中描述的技巧,我们甚至可以比幂和法更有效。