前段时间我有一次有趣的面试经历。问题一开始很简单:

Q1:我们有一个袋子,里面有数字1,2,3,…,100。每个数字恰好出现一次,所以有100个数字。现在从袋子里随机抽取一个数字。找到丢失的号码。

当然,我以前听过这个面试问题,所以我很快就回答了这个问题:

A1:嗯,1 + 2 + 3 +…+ N的和是(N+1)(N/2)(参见维基百科:等差级数的和)。当N = 100时,和是5050。 因此,如果所有的数字都在袋子里,总和将恰好是5050。因为少了一个数,总和就会小于这个数,差的就是这个数。所以我们可以在O(N)时间和O(1)空间中找到这个缺失的数。

在这一点上,我认为我做得很好,但突然间,问题发生了意想不到的转变:

这是正确的,但是如果少了两个数字,你会怎么做?

我以前从未见过/听过/考虑过这种变化,所以我很恐慌,无法回答这个问题。面试官坚持要知道我的思考过程,所以我提到,也许我们可以通过与预期产品进行比较来获得更多信息,或者在从第一次传递中收集到一些信息后再进行第二次传递,等等,但我真的只是在黑暗中拍摄,而不是真正有一个明确的解决方案的路径。

面试官试图鼓励我说,有第二个方程确实是解决问题的一种方法。在这一点上,我有点不安(因为事先不知道答案),并问这是一种通用的(阅读:“有用的”)编程技术,还是只是一个技巧/答案。

面试官的回答让我惊讶:你可以把这个技巧概括为3个缺失的数字。事实上,你可以推广它来找到k个缺失的数。

Qk:如果袋子里少了k个数字,你如何有效地找到它?

这是几个月前的事了,我还不明白这个技巧是什么。显然有一个Ω(N)的时间下限,因为我们必须扫描所有的数字至少一次,但面试官坚持认为,解决技术的时间和空间复杂度(减去O(N)次输入扫描)定义为k而不是N。

所以问题很简单:

如何解决Q2? 你会如何解决Q3? 如何求解Qk?


澄清

Generally there are N numbers from 1..N, not just 1..100. I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N. I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).

当然,你必须以O(N)为单位扫描输入,但你只能捕获少量的信息(用k而不是N定义),然后必须以某种方式找到k个缺失的数字。


当前回答

这可能听起来很愚蠢,但是,在第一个问题中,你必须看到袋子里所有剩下的数字,然后用这个方程把它们加起来,找到缺失的数字。

既然你能看到所有的数字,那就找出少了的那个数字。当缺少两个数字时也是如此。我觉得很简单。当你看到袋子里剩下的数字时,用方程就没有意义了。

其他回答

这可能听起来很愚蠢,但是,在第一个问题中,你必须看到袋子里所有剩下的数字,然后用这个方程把它们加起来,找到缺失的数字。

既然你能看到所有的数字,那就找出少了的那个数字。当缺少两个数字时也是如此。我觉得很简单。当你看到袋子里剩下的数字时,用方程就没有意义了。

我相信我有一个O(k)时间和O(log(k)空间算法,前提是你有任意大整数的下限(x)和log2(x)函数:

你有一个k位的长整数(因此是log8(k)空间),其中你加上x^2,其中x是你在袋子里找到的下一个数字:s=1^2+2^2+…这需要O(N)时间(这对面试官来说不是问题)。最后得到j= (log2(s))这是你要找的最大的数。然后s=s-j,重复上面的步骤:

for (i = 0 ; i < k ; i++)
{
  j = floor(log2(s));
  missing[i] = j;
  s -= j;
}

现在,对于2756位的整数,通常没有floor和log2函数,而是用于double。所以呢?简单地说,对于每2个字节(或1、3、4),您可以使用这些函数来获得所需的数字,但这增加了O(N)因素的时间复杂度

等一下。正如问题所述,袋子里有100个数字。无论k有多大,问题都可以在常数时间内解决,因为您可以使用一个集合,并在最多100k次循环迭代中从集合中删除数字。100是常数。剩下的数就是你的答案。

如果我们将解推广到从1到N的数字,除了N不是常数外,没有什么变化,所以我们在O(N - k) = O(N)时间内。例如,如果我们使用位集,我们在O(N)时间内将位设置为1,遍历这些数字,将位设置为0 (O(N-k) = O(N)),然后我们就得到了答案。

It seems to me that the interviewer was asking you how to print out the contents of the final set in O(k) time rather than O(N) time. Clearly, with a bit set, you have to iterate through all N bits to determine whether you should print the number or not. However, if you change the way the set is implemented you can print out the numbers in k iterations. This is done by putting the numbers into an object to be stored in both a hash set and a doubly linked list. When you remove an object from the hash set, you also remove it from the list. The answers will be left in the list which is now of length k.

You can motivate the solution by thinking about it in terms of symmetries (groups, in math language). No matter the order of the set of numbers, the answer should be the same. If you're going to use k functions to help determine the missing elements, you should be thinking about what functions have that property: symmetric. The function s_1(x) = x_1 + x_2 + ... + x_n is an example of a symmetric function, but there are others of higher degree. In particular, consider the elementary symmetric functions. The elementary symmetric function of degree 2 is s_2(x) = x_1 x_2 + x_1 x_3 + ... + x_1 x_n + x_2 x_3 + ... + x_(n-1) x_n, the sum of all products of two elements. Similarly for the elementary symmetric functions of degree 3 and higher. They are obviously symmetric. Furthermore, it turns out they are the building blocks for all symmetric functions.

你可以通过注意s_2(x,x_(n+1)) = s_2(x) + s_1(x)(x_(n+1))来构建初等对称函数。进一步思考应该会使您相信s_3(x,x_(n+1)) = s_3(x) + s_2(x)(x_(n+1))等等,因此它们可以在一次传递中计算。

我们如何知道数组中缺少了哪些项?考虑多项式(z-x_1) (z-x_2)……(z-x_n)。如果你输入任意一个数字x_i,它的值都是0。展开多项式,得到z^n-s_1(x)z^(n-1)+。+ (-1)^n s_n。初等对称函数也出现在这里,这并不奇怪,因为多项式应该保持不变,如果我们对根进行任何排列。

所以我们可以建立一个多项式,并尝试因式分解来找出哪些数不在集合中,就像其他人提到的那样。

Finally, if we are concerned about overflowing memory with large numbers (the nth symmetric polynomial will be of the order 100!), we can do these calculations mod p where p is a prime bigger than 100. In that case we evaluate the polynomial mod p and find that it again evaluates to 0 when the input is a number in the set, and it evaluates to a non-zero value when the input is a number not in the set. However, as others have pointed out, to get the values out of the polynomial in time that depends on k, not N, we have to factor the polynomial mod p.

我认为这不需要任何复杂的数学方程和理论。下面是一个建议的到位和O(2n)时间复杂度的解决方案:

输入表格假设:

袋子里的数字# = n

缺失数字的数量= k

袋子里的数字由长度为n的数组表示

算法的输入数组长度= n

数组中缺失的条目(从袋子中取出的数字)将被数组中第一个元素的值替换。

如。最初袋子看起来像[2,9,3,7,8,6,4,5,1,10]。 如果4被取出,value 4将变成2(数组的第一个元素)。 因此,在取出4后,袋子将看起来像[2,9,3,7,8,6,2,5,1,10]

此解决方案的关键是在遍历数组时,通过对索引处的值求负来标记访问数的INDEX。

    IEnumerable<int> GetMissingNumbers(int[] arrayOfNumbers)
    {
        List<int> missingNumbers = new List<int>();
        int arrayLength = arrayOfNumbers.Length;

        //First Pass
        for (int i = 0; i < arrayLength; i++)
        {
            int index = Math.Abs(arrayOfNumbers[i]) - 1;
            if (index > -1)
            {
                arrayOfNumbers[index] = Math.Abs(arrayOfNumbers[index]) * -1; //Marking the visited indexes
            }
        }

        //Second Pass to get missing numbers
        for (int i = 0; i < arrayLength; i++)
        {                
            //If this index is unvisited, means this is a missing number
            if (arrayOfNumbers[i] > 0)
            {
                missingNumbers.Add(i + 1);
            }
        }

        return missingNumbers;
    }