前段时间我有一次有趣的面试经历。问题一开始很简单:

Q1:我们有一个袋子,里面有数字1,2,3,…,100。每个数字恰好出现一次,所以有100个数字。现在从袋子里随机抽取一个数字。找到丢失的号码。

当然,我以前听过这个面试问题,所以我很快就回答了这个问题:

A1:嗯,1 + 2 + 3 +…+ N的和是(N+1)(N/2)(参见维基百科:等差级数的和)。当N = 100时,和是5050。 因此,如果所有的数字都在袋子里,总和将恰好是5050。因为少了一个数,总和就会小于这个数,差的就是这个数。所以我们可以在O(N)时间和O(1)空间中找到这个缺失的数。

在这一点上,我认为我做得很好,但突然间,问题发生了意想不到的转变:

这是正确的,但是如果少了两个数字,你会怎么做?

我以前从未见过/听过/考虑过这种变化,所以我很恐慌,无法回答这个问题。面试官坚持要知道我的思考过程,所以我提到,也许我们可以通过与预期产品进行比较来获得更多信息,或者在从第一次传递中收集到一些信息后再进行第二次传递,等等,但我真的只是在黑暗中拍摄,而不是真正有一个明确的解决方案的路径。

面试官试图鼓励我说,有第二个方程确实是解决问题的一种方法。在这一点上,我有点不安(因为事先不知道答案),并问这是一种通用的(阅读:“有用的”)编程技术,还是只是一个技巧/答案。

面试官的回答让我惊讶:你可以把这个技巧概括为3个缺失的数字。事实上,你可以推广它来找到k个缺失的数。

Qk:如果袋子里少了k个数字,你如何有效地找到它?

这是几个月前的事了,我还不明白这个技巧是什么。显然有一个Ω(N)的时间下限,因为我们必须扫描所有的数字至少一次,但面试官坚持认为,解决技术的时间和空间复杂度(减去O(N)次输入扫描)定义为k而不是N。

所以问题很简单:

如何解决Q2? 你会如何解决Q3? 如何求解Qk?


澄清

Generally there are N numbers from 1..N, not just 1..100. I'm not looking for the obvious set-based solution, e.g. using a bit set, encoding the presence/absence each number by the value of a designated bit, therefore using O(N) bits in additional space. We can't afford any additional space proportional to N. I'm also not looking for the obvious sort-first approach. This and the set-based approach are worth mentioning in an interview (they are easy to implement, and depending on N, can be very practical). I'm looking for the Holy Grail solution (which may or may not be practical to implement, but has the desired asymptotic characteristics nevertheless).

当然,你必须以O(N)为单位扫描输入,但你只能捕获少量的信息(用k而不是N定义),然后必须以某种方式找到k个缺失的数字。


当前回答

动机

如果您想解决一般情况下的问题,并且可以存储和编辑数组,那么到目前为止,Caf的解决方案是最有效的。如果您不能存储数组(流版本),那么sdcvvc的答案是目前建议的唯一解决方案类型。

我建议的解决方案是最有效的答案(到目前为止在这个线程中),如果你可以存储数组但不能编辑它,我从Svalorzen的解决方案中得到了这个想法,它解决了1或2个缺失的项目。该方案需要Θ(k*n)时间和O(min(k,log(n))和Ω(log(k))空间。它还可以很好地处理并行性。

概念

这个想法是,如果你使用原始的比较和的方法: sum = SumOf(1,n) - SumOf(数组)

... 然后取缺失数字的平均值: Average = sum/n_missing_numbers

…它提供了一个边界:在缺失的数字中,保证至少有一个数字小于或等于平均值,至少有一个数字大于平均值。这意味着我们可以分成子问题,每个子问题扫描数组[O(n)],并且只关心它们各自的子数组。

Code

c风格的解决方案(不要因为全局变量来评判我,我只是想让代码对非c语言的人来说可读):

#include "stdio.h"

// Example problem:
const int array [] = {0, 7, 3, 1, 5};
const int N = 8; // size of original array
const int array_size = 5;

int SumOneTo (int n)
{
    return n*(n-1)/2; // non-inclusive
}

int MissingItems (const int begin, const int end, int & average)
{
    // We consider only sub-array elements with values, v:
    // begin <= v < end
    
    // Initialise info about missing elements.
    // First assume all are missing:
    int n = end - begin;
    int sum = SumOneTo(end) - SumOneTo(begin);

    // Minus everything that we see (ie not missing):
    for (int i = 0; i < array_size; ++i)
    {
        if ((begin <= array[i]) && (array[i] < end))
        {
            --n;
            sum -= array[i];
        }
    }
    
    // used by caller:
    average = sum/n;
    return n;
}

void Find (const int begin, const int end)
{
    int average;

    if (MissingItems(begin, end, average) == 1)
    {
        printf(" %d", average); // average(n) is same as n
        return;
    }
    
    Find(begin, average + 1); // at least one missing here
    Find(average + 1, end); // at least one here also
}

int main ()
{   
    printf("Missing items:");
    
    Find(0, N);
    
    printf("\n");
}

分析

暂时忽略递归,每个函数调用显然需要O(n)时间和O(1)空间。请注意,sum可以等于n(n-1)/2,因此需要存储n-1所需的位数的两倍。这最多意味着我们实际上需要两个额外的元素的空间,不管数组或k的大小,因此它仍然是O(1)个空间。

对于k个缺失的元素有多少函数调用不是很明显,所以我将提供一个可视化的。原始子数组(连通数组)是完整数组,其中包含所有k个缺失元素。我们将把它们想象成递增的顺序,其中-表示连接(同一子数组的一部分):

M1—m2—m3—m4—(…)—mk-1—mk

Find函数的作用是将缺失的元素断开连接到不同的非重叠子数组中。它保证每个子数组中至少有一个缺失元素,这意味着恰好断开一个连接。

这意味着无论分割是如何发生的,它总是使用k-1 Find函数调用来查找只缺少一个元素的子数组。

那么时间复杂度为Θ((k-1 + k) *n) = Θ(k*n)。

对于空间复杂度,如果我们每次按比例分割,就会得到O(log(k))个空间复杂度,但如果我们每次只分离一个,就会得到O(k)个空间复杂度。

这里有一个关于为什么空间复杂度是O(log(n))的证明。鉴于上面我们已经证明了它也是O(k)那么我们知道它是O(min(k,log(n)))

其他回答

要解决缺少2(和3)个数字的问题,您可以修改quickselect,它平均在O(n)内运行,如果分区是就地完成的,则使用恒定内存。

Partition the set with respect to a random pivot p into partitions l, which contain numbers smaller than the pivot, and r, which contain numbers greater than the pivot. Determine which partitions the 2 missing numbers are in by comparing the pivot value to the size of each partition (p - 1 - count(l) = count of missing numbers in l and n - count(r) - p = count of missing numbers in r) a) If each partition is missing one number, then use the difference of sums approach to find each missing number. (1 + 2 + ... + (p-1)) - sum(l) = missing #1 and ((p+1) + (p+2) ... + n) - sum(r) = missing #2 b) If one partition is missing both numbers and the partition is empty, then the missing numbers are either (p-1,p-2) or (p+1,p+2) depending on which partition is missing the numbers. If one partition is missing 2 numbers but is not empty, then recurse onto that partiton.

由于只缺少2个数字,该算法总是丢弃至少一个分区,因此保持了O(n)个快速选择的平均时间复杂度。类似地,当缺少3个数字时,该算法也会在每次传递中丢弃至少一个分区(因为当缺少2个数字时,最多只有1个分区包含多个缺少的数字)。然而,我不确定当添加更多缺失的数字时,性能会下降多少。

下面是一个不使用就地分区的实现,所以这个例子不满足空间要求,但它确实说明了算法的步骤:

<?php

  $list = range(1,100);
  unset($list[3]);
  unset($list[31]);

  findMissing($list,1,100);

  function findMissing($list, $min, $max) {
    if(empty($list)) {
      print_r(range($min, $max));
      return;
    }

    $l = $r = [];
    $pivot = array_pop($list);

    foreach($list as $number) {
      if($number < $pivot) {
        $l[] = $number;
      }
      else {
        $r[] = $number;
      }
    }

    if(count($l) == $pivot - $min - 1) {
      // only 1 missing number use difference of sums
      print array_sum(range($min, $pivot-1)) - array_sum($l) . "\n";
    }
    else if(count($l) < $pivot - $min) {
      // more than 1 missing number, recurse
      findMissing($l, $min, $pivot-1);
    }

    if(count($r) == $max - $pivot - 1) {
      // only 1 missing number use difference of sums
      print array_sum(range($pivot + 1, $max)) - array_sum($r) . "\n";
    } else if(count($r) < $max - $pivot) {
      // mroe than 1 missing number recurse
      findMissing($r, $pivot+1, $max);
    }
  }

Demo

试着找出从1到50的数的乘积:

令product, P1 = 1 × 2 × 3 × .............50

当你一个一个地把数提出来,把它们相乘,就得到乘积P2。但是这里少了两个数字,因此P2 < P1。

这两项的乘积,a x b = P1 - P2。

你已经知道这个和了,a + b = S1。

由上述两个方程,用二次方程求解a和b。A和b是你缺失的数。

我不知道这是否有效,但我想建议这个解决方案。

计算这100个元素的xor 计算98个元素的xor(在2个元素被移除之后) 现在(1的结果)XOR(2的结果)给你两个缺失的no的XOR,如果a和b是缺失的元素 4.用常用的求和公式diff得到缺失的no的和,我们设diff是d。

现在运行一个循环,得到可能的对(p,q),它们都位于[1,100],和为d。

当获得一对时,检查(3的结果)是否XOR p = q 如果是,我们就完成了。

如果我错了,请纠正我,如果这是正确的,也请评论时间复杂性

有一个通用的方法来解决这样的流问题。 我们的想法是使用一些随机化,希望将k个元素“分散”到独立的子问题中,在那里我们的原始算法为我们解决了问题。该技术用于稀疏信号重建等。

创建一个大小为u = k^2的数组a。 选取任意通用哈希函数h:{1,…,n} ->{1,…,u}。(如multiply-shift) 对于1中的每一个i,…, n增加a[h(i)] += i 对于输入流中的每个数字x,减去a[h(x)] -= x。

如果所有缺失的数字都已散列到不同的bucket中,则数组的非零元素现在将包含缺失的数字。

根据通用哈希函数的定义,特定对被发送到同一桶的概率小于1/u。由于大约有k^2/2对,我们有错误概率不超过k^2/2/u=1/2。也就是说,我们成功的概率至少是50%,如果我们增加u,我们的机会就会增加。

注意,这个算法占用k^2 logn位的空间(每个数组桶需要logn位)。这与@Dimitris Andreou的答案所需要的空间相匹配(特别是多项式因式分解的空间要求,它碰巧也是随机的。) 该算法每次更新的时间也是常数,而不是幂和情况下的时间k。

事实上,通过使用评论中描述的技巧,我们甚至可以比幂和法更有效。

我们可以用O(log n)来做Q1和Q2。

假设我们的存储芯片由n个试管阵列组成。试管中的数字x用x毫升化学液体表示。

假设我们的处理器是一束激光。当我们点燃激光时,它垂直穿过所有的管子。每次它通过化学液体,光度就降低1。在某毫升处通过光是O(1)的运算。

现在如果我们在试管的中间点上激光就会得到光度的输出

等于预先计算的值(当没有数字缺失时计算),则缺失的数字大于n/2。 如果我们的输出更小,那么至少有一个小于n/2的数字缺失。我们也可以检查光度是否降低了1或2。如果它减少1,那么一个缺失数小于n/2,另一个大于n/2。如果它减2,那么两个数都小于n/2。

我们可以一次又一次地重复上述过程,缩小我们的问题域。在每一步中,我们将定义域缩小一半。最后我们可以得到结果。

值得一提的是并行算法(因为它们很有趣),

sorting by some parallel algorithm, for example, parallel merge can be done in O(log^3 n) time. And then the missing number can be found by binary search in O(log n) time. Theoretically, if we have n processors then each process can check one of the inputs and set some flag that identifies the number(conveniently in an array). And in the next step each process can check each flag and finally output the number that is not flagged. The whole process will take O(1) time. It has additional O(n) space/memory requirement.

请注意,如上所述,上面提供的两个并行算法可能需要额外的空间。