在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
当前回答
经过努力,我想我终于明白了单子。在重新阅读了我自己对绝大多数投票结果的冗长批评之后,我将给出这个解释。
要理解单子,需要回答三个问题:
你为什么需要蒙纳德?什么是单子?如何实现monad?
正如我在最初的评论中所指出的,有太多的monad解释被第3个问题所困扰,没有,也没有充分地涵盖第2个问题或第1个问题。
你为什么需要蒙纳德?
Haskell等纯函数式语言与C或Java等命令式语言的不同之处在于,纯函数式程序不一定按特定顺序执行,一步一步执行。Haskell程序更类似于一个数学函数,在该函数中,您可以以任意数量的潜在阶数求解“方程”。这带来了许多好处,其中之一是它消除了某些类型的错误的可能性,特别是那些与“状态”相关的错误。
然而,使用这种编程风格,有些问题不是很容易解决的。有些事情,比如控制台编程和文件i/o,需要按照特定的顺序进行,或者需要维护状态。处理这个问题的一种方法是创建一种表示计算状态的对象,以及一系列将状态对象作为输入并返回新修改的状态对象的函数。
因此,让我们创建一个假设的“状态”值,它表示控制台屏幕的状态。这个值是如何构造的并不重要,但假设它是一个字节长度的ascii字符数组,表示屏幕上当前可见的内容,以及一个表示用户输入的最后一行伪代码的数组。我们已经定义了一些接受控制台状态、修改它并返回新控制台状态的函数。
consolestate MyConsole = new consolestate;
因此,要进行控制台编程,但以纯函数的方式,您需要在彼此之间嵌套许多函数调用。
consolestate FinalConsole = print(input(print(myconsole, "Hello, what's your name?")),"hello, %inputbuffer%!");
以这种方式编程保持了“纯”的功能风格,同时强制对控制台的更改按特定顺序进行。但是,我们可能希望像上面的示例一样,一次只执行几个操作。以这种方式嵌套函数将开始变得笨拙。我们想要的是基本上与上面相同的代码,但编写得更像这样:
consolestate FinalConsole = myconsole:
print("Hello, what's your name?"):
input():
print("hello, %inputbuffer%!");
这确实是一种更方便的写法。但我们如何做到这一点呢?
什么是单子?
一旦你定义了一个类型(比如consoleestate),以及一系列专门为该类型操作而设计的函数,你就可以通过定义一个操作符(比如:(bind))将这些东西的整个包变成一个“monad”,该操作符会自动将返回值输入到左边的函数参数中,转换为与特定类型的绑定运算符一起工作的函数。
如何实现monad?
看到其他答案,似乎可以很自由地跳到细节中。
其他回答
事实上,与一般人对蒙得斯的理解相反,他们与国家无关。Monads只是一种包装东西的方法,它提供了对包装好的东西进行操作而不展开的方法。
例如,您可以在Haskell中创建一个类型来包装另一个类型:
data Wrapped a = Wrap a
包装我们定义的东西
return :: a -> Wrapped a
return x = Wrap x
要在不展开的情况下执行操作,假设您有一个函数f::a->b,然后您可以执行此操作来提升该函数以作用于包装的值:
fmap :: (a -> b) -> (Wrapped a -> Wrapped b)
fmap f (Wrap x) = Wrap (f x)
这就是所有需要理解的。然而,事实证明,有一个更通用的函数来执行此提升,即bind:
bind :: (a -> Wrapped b) -> (Wrapped a -> Wrapped b)
bind f (Wrap x) = f x
bind可以比fmap做得更多,但反之亦然。实际上,fmap只能用绑定和返回来定义。因此,在定义monad时。。您给出它的类型(这里是Wrapped a),然后说明它的返回和绑定操作是如何工作的。
很酷的是,这是一个普遍的模式,它会在所有地方弹出,以纯方式封装状态只是其中之一。
有关如何使用monad来引入函数依赖关系,从而控制求值顺序(如Haskell的IO monad中所用)的好文章,请查看IOInside。
至于理解单子,不要太担心。读一些你觉得有趣的东西,如果你不马上理解,也不要担心。那就用Haskell这样的语言潜水吧。修道院就是这样一种东西,在那里,通过练习,理解慢慢地进入你的大脑,有一天你突然意识到你理解了它们。
根据我们所谈论的monad,“什么是monad”这个问题是错误的:
对“什么是单单体?”这个问题的简短回答是,它是内函子范畴中的单单体,或者它是一种通用数据类型,配备了满足某些定律的两个运算。这是正确的,但它并没有揭示一个重要的大局。这是因为问题是错误的。在这篇论文中,我们的目标是回答正确的问题,即“当作者谈论单子时,他们真正说的是什么?”
虽然这篇论文没有直接回答什么是单子,但它有助于理解不同背景的人谈论单子时的含义以及原因。
正如丹尼尔·斯皮瓦克(Daniel Spiewak)所解释的,修道院不是隐喻,而是从一种共同模式中产生的一种实用的抽象。
实际上,monad基本上允许回调嵌套(具有相互递归的线程状态(请忽略连字符))(以可组合(或可分解)的方式)(具有类型安全性(有时(取决于语言))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
例如,这不是单子:
//JavaScript is 'Practical'
var getAllThree =
bind(getFirst, function(first){
return bind(getSecond,function(second){
return bind(getThird, function(third){
var fancyResult = // And now make do fancy
// with first, second,
// and third
return RETURN(fancyResult);
});});});
但是monad启用了这样的代码。monad实际上是一组类型:{bind,RETURN,也许其他我不认识的人…}。这本质上是无关紧要的,实际上是不切实际的。
所以现在我可以使用它:
var fancyResultReferenceOutsideOfMonad =
getAllThree(someKindOfInputAcceptableToOurGetFunctionsButProbablyAString);
//Ignore this please, throwing away types, yay JavaScript:
// RETURN = K
// bind = \getterFn,cb ->
// \in -> let(result,newState) = getterFn(in) in cb(result)(newState)
或将其分解:
var getFirstTwo =
bind(getFirst, function(first){
return bind(getSecond,function(second){
var fancyResult2 = // And now make do fancy
// with first and second
return RETURN(fancyResult2);
});})
, getAllThree =
bind(getFirstTwo, function(fancyResult2){
return bind(getThird, function(third){
var fancyResult3 = // And now make do fancy
// with fancyResult2,
// and third
return RETURN(fancyResult3);
});});
或者忽略某些结果:
var getFirstTwo =
bind(getFirst, function(first){
return bind(getSecond,function(second){
var fancyResult2 = // And now make do fancy
// with first and second
return RETURN(fancyResult2);
});})
, getAllThree =
bind(getFirstTwo, function(____dontCare____NotGonnaUse____){
return bind(getThird, function(three){
var fancyResult3 = // And now make do fancy
// with `three` only!
return RETURN(fancyResult3);
});});
或者从以下内容简化一个小案例:
var getFirstTwo =
bind(getFirst, function(first){
return bind(getSecond,function(second){
var fancyResult2 = // And now make do fancy
// with first and second
return RETURN(fancyResult2);
});})
, getAllThree =
bind(getFirstTwo, function(_){
return bind(getThird, function(three){
return RETURN(three);
});});
收件人(使用“正确身份”):
var getFirstTwo =
bind(getFirst, function(first){
return bind(getSecond,function(second){
var fancyResult2 = // And now make do fancy
// with first and second
return RETURN(fancyResult2);
});})
, getAllThree =
bind(getFirstTwo, function(_){
return getThird;
});
或者把它们挤在一起:
var getAllThree =
bind(getFirst, function(first_dontCareNow){
return bind(getSecond,function(second_dontCareNow){
return getThird;
});});
这些能力的实用性并没有真正显现出来,或者变得清晰,直到你试图解决真正的棘手问题例如解析或模块/ajax/资源加载。
你能想象成千上万行indexOf/subString逻辑吗?如果频繁的解析步骤包含在小函数中呢?像字符、空格、大写字符或数字这样的函数?如果这些函数在回调中给出了结果,而不必与Regex集团和争论发生冲突?如果它们的组成/分解被很好地理解了呢?这样你就可以从下往上构建大型解析器了吗?
因此,管理嵌套回调范围的能力非常实用,尤其是在使用monadic解析器组合器库时。(也就是说,根据我的经验)
不要挂断电话:-分类理论-可能是月-莫纳德定律-哈斯克尔- !!!!
Monoid似乎可以确保在Monoid和受支持的类型上定义的所有操作始终返回Monoid内部的受支持类型。任何数字+任何数字=一个数字,没有错误。
而除法接受两个分数,并返回一个分数,该分数在haskell somewhy中将除以零定义为无穷大(恰好是分数somewhy)。。。
在任何情况下,Monads似乎只是一种确保您的操作链以可预测的方式运行的方法,而一个声称为Num->Num的函数,由另一个用x调用的Num->Num的函数组成,并不意味着发射导弹。
另一方面,如果我们有一个功能可以发射导弹,我们可以将它与其他功能组合起来,也可以发射导弹。
在Haskell中,main的类型是IO()或IO[()],这种区分很奇怪,我不会讨论它,但我认为会发生以下情况:
如果我有main,我希望它做一系列动作,我运行程序的原因是产生一个效果——通常是通过IO。因此,我可以将IO操作串联在一起,以便——做IO,而不是其他。
如果我尝试做一些不“返回IO”的事情,程序会抱怨链不流动,或者基本上“这与我们正在尝试做的事情有什么关系——IO动作”,这似乎迫使程序员保持思路,不偏离并思考发射导弹,同时创建排序算法——不流动。
基本上,Monads似乎是编译器的一个提示,“嘿,你知道这个函数在这里返回一个数字,它实际上并不总是有效的,它有时会产生一个number,有时什么都没有,请记住这一点”。知道了这一点,如果你试图断言一个单元动作,单元动作可能会作为一个编译时异常,说“嘿,这实际上不是一个数字,这可能是一个数字。但你不能假设这一点。做一些事情以确保流是可接受的。”这在一定程度上防止了不可预测的程序行为。
似乎monad不是关于纯粹性,也不是关于控制,而是关于维护一个类别的身份,在这个类别上,所有行为都是可预测和定义的,或者不编译。当你被要求做某事时,你不能什么都不做,如果你被要求什么都不干(可见),你也不能做。
我能想到的Monads的最大原因是——看看程序/OOP代码,你会发现你不知道程序从哪里开始,也不知道程序的结束,你看到的只是大量的跳跃和大量的数学、魔法和导弹。您将无法维护它,如果可以的话,您将花费大量的时间来思考整个程序,然后才能理解其中的任何部分,因为在这种情况下,模块化是基于代码的相互依赖的“部分”,其中代码被优化为尽可能相关,以保证效率/相互关系。单子是非常具体的,并且通过定义得到了很好的定义,并确保程序流程可以进行分析,并隔离难以分析的部分——因为它们本身就是单子。monad似乎是一个“可理解的单元,它在完全理解时是可预测的”——如果你理解“可能”monad,那么它除了“可能”之外就没有可能做任何事情,这看起来微不足道,但在大多数非monad代码中,一个简单的函数“helloworld”可以发射导弹,什么都不做,或者摧毁宇宙,甚至扭曲时间——我们不知道也不能保证它是什么样子。一个单子保证它就是什么样子。这是非常强大的。
“现实世界”中的所有事物似乎都是单子,因为它受到防止混淆的明确可观察规律的约束。这并不意味着我们必须模仿这个对象的所有操作来创建类,相反,我们可以简单地说“一个正方形就是一个正方形”,只不过是一个正方形,甚至不是矩形或圆形,和“一个正方形的面积是它现有维度的长度乘以它自身的面积。无论你有什么正方形,如果它是2D空间中的正方形,它的面积绝对不能是任何东西,只有它的长度平方,这几乎是微不足道的。这是非常强大的,因为我们不需要断言我们的世界是这样的,我们只需要使用现实的含义来预测它。”防止我们的节目偏离轨道。
我几乎可以肯定是错的,但我认为这可以帮助一些人,所以希望它能帮助一些人。