在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?

我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。


当前回答

在Scala的上下文中,您会发现以下是最简单的定义。基本上,flatMap(或bind)是“关联”的,并且存在一个标识。

trait M[+A] {
  def flatMap[B](f: A => M[B]): M[B] // AKA bind

  // Pseudo Meta Code
  def isValidMonad: Boolean = {
    // for every parameter the following holds
    def isAssociativeOn[X, Y, Z](x: M[X], f: X => M[Y], g: Y => M[Z]): Boolean =
      x.flatMap(f).flatMap(g) == x.flatMap(f(_).flatMap(g))

    // for every parameter X and x, there exists an id
    // such that the following holds
    def isAnIdentity[X](x: M[X], id: X => M[X]): Boolean =
      x.flatMap(id) == x
  }
}

E.g.

// These could be any functions
val f: Int => Option[String] = number => if (number == 7) Some("hello") else None
val g: String => Option[Double] = string => Some(3.14)

// Observe these are identical. Since Option is a Monad 
// they will always be identical no matter what the functions are
scala> Some(7).flatMap(f).flatMap(g)
res211: Option[Double] = Some(3.14)

scala> Some(7).flatMap(f(_).flatMap(g))
res212: Option[Double] = Some(3.14)


// As Option is a Monad, there exists an identity:
val id: Int => Option[Int] = x => Some(x)

// Observe these are identical
scala> Some(7).flatMap(id)
res213: Option[Int] = Some(7)

scala> Some(7)
res214: Some[Int] = Some(7)

注:严格地说,函数编程中的Monad的定义与范畴理论中的Monard的定义不同,后者是按映射和展平的顺序定义的。尽管它们在某些映射下是等价的。这个演示非常好:http://www.slideshare.net/samthemonad/monad-presentation-scala-as-a-category

其他回答

你应该首先了解函子是什么。在此之前,先了解高阶函数。

高阶函数只是一个以函数为自变量的函数。

函子是任何类型构造T,其中存在一个高阶函数,称之为map,它将类型为A->b的函数(给定任意两个类型A和b)转换为函数Ta->Tb。该map函数还必须遵守恒等式和复合法则,以便以下表达式对所有p和q返回true(Haskell表示法):

map id = id
map (p . q) = map p . map q

例如,名为List的类型构造函数是一个函子,如果它配备了一个类型为(a->b)->Lista->Listb的函数,该函数遵守上述定律。唯一实际的实施是显而易见的。生成的Lista->Listb函数在给定列表上迭代,为每个元素调用(a->b)函数,并返回结果列表。

monad本质上只是一个函子T,它有两个额外的方法,类型为T(T A)->T A的join和类型为A->T A的unit(有时称为return、fork或pure)。对于Haskell中的列表:

join :: [[a]] -> [a]
pure :: a -> [a]

为什么有用?因为例如,您可以使用返回列表的函数映射列表。Join获取生成的列表列表并将它们连接起来。列表是monad,因为这是可能的。

您可以编写一个函数,先映射,然后连接。此函数称为bind或flatMap,或(>>=)或(=<<)。这通常是Haskell中给出monad实例的方式。

monad必须满足某些定律,即联接必须是关联的。这意味着,如果您的值x类型为[[a]]],那么join(join x)应该等于join(map joinx)。纯必须是联接的标识,这样联接(纯x)==x。

正如丹尼尔·斯皮瓦克(Daniel Spiewak)所解释的,修道院不是隐喻,而是从一种共同模式中产生的一种实用的抽象。

数学思维

简而言之:用于组合计算的代数结构。

返回数据:创建一个只需在monad世界中生成数据的计算。

(return data)>>=(return func):第二个参数接受第一个参数作为数据生成器,并创建连接它们的新计算。

您可以认为(>>=)和return本身不会进行任何计算。他们只是简单地组合和创建计算。

当且仅当main触发时,任何monad计算都将被计算。

我最喜欢的Monad教程:

http://www.haskell.org/haskellwiki/All_About_Monads

(在谷歌搜索“monad教程”的17万次点击中!)

@斯图:monads的目的是允许您将(通常)顺序语义添加到纯代码中;您甚至可以组合Monad(使用Monad Transformers)并获得更有趣和复杂的组合语义,例如,带有错误处理的解析、共享状态和日志记录。所有这些在纯代码中都是可能的,monad只允许您将其抽象并在模块化库中重用(在编程中总是很好的),并提供方便的语法使其看起来势在必行。

Haskell已经有了运算符重载[1]:它使用类型类的方式与使用Java或C#中的接口的方式非常相似,但Haskell恰好也允许使用非字母数字标记(如+&&和>)作为中缀标识符。如果您的意思是“重载分号”[2],那么在您看来这只是运算符重载。“重载分号”听起来像是黑魔法,自找麻烦(想象一下有进取心的Perl黑客听到了这个想法),但关键是没有monad就没有分号,因为纯函数代码不需要或不允许显式排序。

这一切听起来比实际情况要复杂得多。sigfpe的文章很酷,但使用了Haskell来解释它,这有点无法打破理解Haskell到grok Monads和理解Monads到grok Haskell的鸡和蛋的问题。

[1] 这是与monad不同的问题,但monad使用Haskell的运算符重载特性。

[2] 这也是一个过度简化,因为链接一元操作的运算符是>>=(发音为“bind”),但有语法糖(“do”)允许您使用大括号和分号和/或缩进和换行。

最近我一直在以不同的方式思考莫纳斯。我一直认为它们以数学的方式抽象出执行顺序,这使得新类型的多态性成为可能。

如果您使用的是命令式语言,并且您按照顺序编写一些表达式,那么代码始终按照该顺序运行。

在简单的例子中,当你使用monad时,感觉是一样的——你定义了一个按顺序发生的表达式列表。除此之外,根据您使用的monad,您的代码可能会按顺序运行(如IO monad),同时在多个项目上并行运行(如List monad);它可能会中途停止(如Maybe monad)。它可能会在中途暂停以稍后恢复(如Resume monad)),或者它可能会中途倒带以尝试其他选项(如逻辑单声道)。

因为monad是多态的,所以可以根据需要在不同的monad中运行相同的代码。

此外,在某些情况下,可以将monad组合在一起(使用monad转换器)以同时获得多个特性。