在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
在最近简要回顾了Haskell之后,对于monad本质上是什么,有什么简单、简洁、实用的解释?
我发现,我遇到的大多数解释都很难理解,而且缺乏实际细节。
当前回答
monad是一种具有两个操作的数据类型:>>=(又名bind)和return(又名unit)。return接受一个任意值并用它创建monad的实例。>>=接受monad的一个实例并在其上映射一个函数。(您已经可以看到monad是一种奇怪的数据类型,因为在大多数编程语言中,您无法编写一个接受任意值并从中创建类型的函数。monad使用一种参数多态性。)
在Haskell表示法中,monad接口是
class Monad m where
return :: a -> m a
(>>=) :: forall a b . m a -> (a -> m b) -> m b
这些操作应该遵守某些“法则”,但这并不是非常重要的:“法则”只是将操作的合理实现行为化(基本上,>>=和return应该就如何将值转换为monad实例达成一致,并且>>=是关联的)。
Monad不仅仅是关于状态和I/O:它们抽象了一种常见的计算模式,包括处理状态、I/O、异常和非确定性。可能最容易理解的单子是列表和选项类型:
instance Monad [ ] where
[] >>= k = []
(x:xs) >>= k = k x ++ (xs >>= k)
return x = [x]
instance Monad Maybe where
Just x >>= k = k x
Nothing >>= k = Nothing
return x = Just x
其中[]和:是列表构造函数,++是串联运算符,Just和Nothing是Maybe构造函数。这两个monad都在各自的数据类型上封装了常见的有用的计算模式(请注意,两者都与副作用或I/O无关)。
你真的需要写一些非平凡的Haskell代码来理解monad的含义以及它们为什么有用。
其他回答
除了上面出色的答案之外,让我为您提供以下文章的链接(由Patrick Thomson撰写),该文章通过将概念与JavaScript库jQuery(及其使用“方法链接”来操作DOM的方式)相关联来解释monads:jQuery是Monad
jQuery文档本身并没有提到术语“monad”,而是谈到了可能更熟悉的“构建器模式”。这并不能改变一个事实,那就是你有一个合适的monad,也许你甚至没有意识到它。
但是,你本可以发明蒙纳斯!
sigfpe说:但所有这些都将单子介绍为需要解释的深奥的东西。但我想说的是,它们一点都不深奥。事实上,面对函数式编程中的各种问题,你会不可避免地被引向某些解决方案,所有这些都是单子的例子。事实上,如果你还没有发明,我希望你现在就发明它们。这是注意到所有这些解决方案实际上都是变相的相同解决方案的一小步。读完这篇文章后,你可能会更好地理解单子上的其他文档,因为你会发现你所看到的一切都是你已经发明的。monads试图解决的许多问题都与副作用有关。因此,我们将从它们开始。(请注意,monad让您做的不仅仅是处理副作用,特别是许多类型的容器对象都可以被视为monad。monad的一些介绍发现,很难协调monad的这两种不同用法,并且只关注其中一种。)在命令式编程语言(如C++)中,函数的行为与数学函数完全不同。例如,假设我们有一个C++函数,它接受一个浮点参数并返回一个浮点结果。从表面上看,它可能有点像一个将实数映射到实数的数学函数,但C++函数可以做的不仅仅是返回一个依赖于其参数的数字。它可以读取和写入全局变量的值,也可以将输出写入屏幕并接收用户的输入。然而,在纯函数语言中,函数只能读取在其参数中提供给它的内容,而它对世界产生影响的唯一方式是通过它返回的值。
monad是一种将共享共同上下文的计算组合在一起的方法。这就像建立一个管道网络。当构建网络时,没有数据流过它。但是当我用“bind”和“return”将所有位拼接在一起后,我调用类似runMyMonad monad数据的东西,数据流过管道。
事实上,与一般人对蒙得斯的理解相反,他们与国家无关。Monads只是一种包装东西的方法,它提供了对包装好的东西进行操作而不展开的方法。
例如,您可以在Haskell中创建一个类型来包装另一个类型:
data Wrapped a = Wrap a
包装我们定义的东西
return :: a -> Wrapped a
return x = Wrap x
要在不展开的情况下执行操作,假设您有一个函数f::a->b,然后您可以执行此操作来提升该函数以作用于包装的值:
fmap :: (a -> b) -> (Wrapped a -> Wrapped b)
fmap f (Wrap x) = Wrap (f x)
这就是所有需要理解的。然而,事实证明,有一个更通用的函数来执行此提升,即bind:
bind :: (a -> Wrapped b) -> (Wrapped a -> Wrapped b)
bind f (Wrap x) = f x
bind可以比fmap做得更多,但反之亦然。实际上,fmap只能用绑定和返回来定义。因此,在定义monad时。。您给出它的类型(这里是Wrapped a),然后说明它的返回和绑定操作是如何工作的。
很酷的是,这是一个普遍的模式,它会在所有地方弹出,以纯方式封装状态只是其中之一。
有关如何使用monad来引入函数依赖关系,从而控制求值顺序(如Haskell的IO monad中所用)的好文章,请查看IOInside。
至于理解单子,不要太担心。读一些你觉得有趣的东西,如果你不马上理解,也不要担心。那就用Haskell这样的语言潜水吧。修道院就是这样一种东西,在那里,通过练习,理解慢慢地进入你的大脑,有一天你突然意识到你理解了它们。
实际上,monad基本上允许回调嵌套(具有相互递归的线程状态(请忽略连字符))(以可组合(或可分解)的方式)(具有类型安全性(有时(取决于语言))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
例如,这不是单子:
//JavaScript is 'Practical'
var getAllThree =
bind(getFirst, function(first){
return bind(getSecond,function(second){
return bind(getThird, function(third){
var fancyResult = // And now make do fancy
// with first, second,
// and third
return RETURN(fancyResult);
});});});
但是monad启用了这样的代码。monad实际上是一组类型:{bind,RETURN,也许其他我不认识的人…}。这本质上是无关紧要的,实际上是不切实际的。
所以现在我可以使用它:
var fancyResultReferenceOutsideOfMonad =
getAllThree(someKindOfInputAcceptableToOurGetFunctionsButProbablyAString);
//Ignore this please, throwing away types, yay JavaScript:
// RETURN = K
// bind = \getterFn,cb ->
// \in -> let(result,newState) = getterFn(in) in cb(result)(newState)
或将其分解:
var getFirstTwo =
bind(getFirst, function(first){
return bind(getSecond,function(second){
var fancyResult2 = // And now make do fancy
// with first and second
return RETURN(fancyResult2);
});})
, getAllThree =
bind(getFirstTwo, function(fancyResult2){
return bind(getThird, function(third){
var fancyResult3 = // And now make do fancy
// with fancyResult2,
// and third
return RETURN(fancyResult3);
});});
或者忽略某些结果:
var getFirstTwo =
bind(getFirst, function(first){
return bind(getSecond,function(second){
var fancyResult2 = // And now make do fancy
// with first and second
return RETURN(fancyResult2);
});})
, getAllThree =
bind(getFirstTwo, function(____dontCare____NotGonnaUse____){
return bind(getThird, function(three){
var fancyResult3 = // And now make do fancy
// with `three` only!
return RETURN(fancyResult3);
});});
或者从以下内容简化一个小案例:
var getFirstTwo =
bind(getFirst, function(first){
return bind(getSecond,function(second){
var fancyResult2 = // And now make do fancy
// with first and second
return RETURN(fancyResult2);
});})
, getAllThree =
bind(getFirstTwo, function(_){
return bind(getThird, function(three){
return RETURN(three);
});});
收件人(使用“正确身份”):
var getFirstTwo =
bind(getFirst, function(first){
return bind(getSecond,function(second){
var fancyResult2 = // And now make do fancy
// with first and second
return RETURN(fancyResult2);
});})
, getAllThree =
bind(getFirstTwo, function(_){
return getThird;
});
或者把它们挤在一起:
var getAllThree =
bind(getFirst, function(first_dontCareNow){
return bind(getSecond,function(second_dontCareNow){
return getThird;
});});
这些能力的实用性并没有真正显现出来,或者变得清晰,直到你试图解决真正的棘手问题例如解析或模块/ajax/资源加载。
你能想象成千上万行indexOf/subString逻辑吗?如果频繁的解析步骤包含在小函数中呢?像字符、空格、大写字符或数字这样的函数?如果这些函数在回调中给出了结果,而不必与Regex集团和争论发生冲突?如果它们的组成/分解被很好地理解了呢?这样你就可以从下往上构建大型解析器了吗?
因此,管理嵌套回调范围的能力非常实用,尤其是在使用monadic解析器组合器库时。(也就是说,根据我的经验)
不要挂断电话:-分类理论-可能是月-莫纳德定律-哈斯克尔- !!!!