我想将JSON数据转换为Python对象。
我从Facebook API收到JSON数据对象,我想将其存储在数据库中。
我的当前视图在Django (Python)(请求。POST包含JSON):
response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()
这很好,但是如何处理复杂的JSON数据对象呢?
如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?
既然没有人给出了和我一样的答案,我就把它贴在这里。
这是一个健壮的类,可以轻松地在JSON str和dict之间来回转换,我已经从我的答案复制到另一个问题:
import json
class PyJSON(object):
def __init__(self, d):
if type(d) is str:
d = json.loads(d)
self.from_dict(d)
def from_dict(self, d):
self.__dict__ = {}
for key, value in d.items():
if type(value) is dict:
value = PyJSON(value)
self.__dict__[key] = value
def to_dict(self):
d = {}
for key, value in self.__dict__.items():
if type(value) is PyJSON:
value = value.to_dict()
d[key] = value
return d
def __repr__(self):
return str(self.to_dict())
def __setitem__(self, key, value):
self.__dict__[key] = value
def __getitem__(self, key):
return self.__dict__[key]
json_str = """... JSON string ..."""
py_json = PyJSON(json_str)
我认为最简单的解决方法是
import orjson # faster then json =)
from typing import NamedTuple
_j = '{"name":"Иван","age":37,"mother":{"name":"Ольга","age":58},"children":["Маша","Игорь","Таня"],"married": true,' \
'"dog":null} '
class PersonNameAge(NamedTuple):
name: str
age: int
class UserInfo(NamedTuple):
name: str
age: int
mother: PersonNameAge
children: list
married: bool
dog: str
j = orjson.loads(_j)
u = UserInfo(**j)
print(u.name, u.age, u.mother, u.children, u.married, u.dog)
>>> Ivan 37 {'name': 'Olga', 'age': 58} ['Mary', 'Igor', 'Jane'] True None
这不是一个很难的事情,我看到上面的答案,他们中的大多数在“列表”中有一个性能问题
这段代码比上面的代码快得多
import json
class jsonify:
def __init__(self, data):
self.jsonify = data
def __getattr__(self, attr):
value = self.jsonify.get(attr)
if isinstance(value, (list, dict)):
return jsonify(value)
return value
def __getitem__(self, index):
value = self.jsonify[index]
if isinstance(value, (list, dict)):
return jsonify(value)
return value
def __setitem__(self, index, value):
self.jsonify[index] = value
def __delattr__(self, index):
self.jsonify.pop(index)
def __delitem__(self, index):
self.jsonify.pop(index)
def __repr__(self):
return json.dumps(self.jsonify, indent=2, default=lambda x: str(x))
exmaple
response = jsonify(
{
'test': {
'test1': [{'ok': 1}]
}
}
)
response.test -> jsonify({'test1': [{'ok': 1}]})
response.test.test1 -> jsonify([{'ok': 1}])
response.test.test1[0] -> jsonify({'ok': 1})
response.test.test1[0].ok -> int(1)
使用python 3.7,我发现下面的代码非常简单有效。在本例中,将JSON从文件加载到字典中:
class Characteristic:
def __init__(self, characteristicName, characteristicUUID):
self.characteristicName = characteristicName
self.characteristicUUID = characteristicUUID
class Service:
def __init__(self, serviceName, serviceUUID, characteristics):
self.serviceName = serviceName
self.serviceUUID = serviceUUID
self.characteristics = characteristics
class Definitions:
def __init__(self, services):
self.services = []
for service in services:
self.services.append(Service(**service))
def main():
parser = argparse.ArgumentParser(
prog="BLEStructureGenerator",
description="Taking in a JSON input file which lists all of the services, "
"characteristics and encoded properties. The encoding takes in "
"another optional template services and/or characteristics "
"file where the JSON file contents are applied to the templates.",
epilog="Copyright Brown & Watson International"
)
parser.add_argument('definitionfile',
type=argparse.FileType('r', encoding='UTF-8'),
help="JSON file which contains the list of characteristics and "
"services in the required format")
parser.add_argument('-s', '--services',
type=argparse.FileType('r', encoding='UTF-8'),
help="Services template file to be used for each service in the "
"JSON file list")
parser.add_argument('-c', '--characteristics',
type=argparse.FileType('r', encoding='UTF-8'),
help="Characteristics template file to be used for each service in the "
"JSON file list")
args = parser.parse_args()
definition_dict = json.load(args.definitionfile)
definitions = Definitions(**definition_dict)
更新
在Python3中,你可以使用SimpleNamespace和object_hook在一行中完成:
import json
from types import SimpleNamespace
data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'
# Parse JSON into an object with attributes corresponding to dict keys.
x = json.loads(data, object_hook=lambda d: SimpleNamespace(**d))
print(x.name, x.hometown.name, x.hometown.id)
旧答案(Python2)
在Python2中,你可以使用namedtuple和object_hook在一行中完成(但对于嵌套对象非常慢):
import json
from collections import namedtuple
data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'
# Parse JSON into an object with attributes corresponding to dict keys.
x = json.loads(data, object_hook=lambda d: namedtuple('X', d.keys())(*d.values()))
print x.name, x.hometown.name, x.hometown.id
或者,为了便于重用:
def _json_object_hook(d): return namedtuple('X', d.keys())(*d.values())
def json2obj(data): return json.loads(data, object_hook=_json_object_hook)
x = json2obj(data)
如果希望它处理不是很好的属性名称的键,请检查namedtuple的rename参数。
这似乎是一个XY问题(问A实际问题在哪里B)。
问题的根源是:如何有效地引用/修改深嵌套的JSON结构,而不必做obj['foo']['bar'][42]['quux'],这带来了键入挑战,代码膨胀问题,可读性问题和错误捕获问题?
使用抢
from glom import glom
# Basic deep get
data = {'a': {'b': {'c': 'd'}}}
print(glom(data, 'a.b.c'))
它还将处理列表项:
我已经对一个简单的实现进行了基准测试:
def extract(J, levels):
# Twice as fast as using glom
for level in levels.split('.'):
J = J[int(level) if level.isnumeric() else level]
return J
... 并且在复杂的JSON对象上返回0.14ms,而朴素的impl则返回0.06ms。
它还可以处理复杂的查询,例如取出所有foo.bar.记录,其中.name == 'Joe Bloggs'
编辑:
另一种性能方法是递归地使用覆盖__getitem__和__getattr__的类:
class Ob:
def __init__(self, J):
self.J = J
def __getitem__(self, index):
return Ob(self.J[index])
def __getattr__(self, attr):
value = self.J.get(attr, None)
return Ob(value) if type(value) in (list, dict) else value
现在你可以做:
ob = Ob(J)
# if you're fetching a final raw value (not list/dict
ob.foo.bar[42].quux.leaf
# for intermediate values
ob.foo.bar[42].quux.J
这一基准测试也出奇地好。与我之前的天真冲动相当。如果有人能找到一种方法来整理非叶查询的访问,请留下评论!