我想将JSON数据转换为Python对象。

我从Facebook API收到JSON数据对象,我想将其存储在数据库中。

我的当前视图在Django (Python)(请求。POST包含JSON):

response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()

这很好,但是如何处理复杂的JSON数据对象呢? 如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?


当前回答

既然没有人给出了和我一样的答案,我就把它贴在这里。

这是一个健壮的类,可以轻松地在JSON str和dict之间来回转换,我已经从我的答案复制到另一个问题:

import json

class PyJSON(object):
    def __init__(self, d):
        if type(d) is str:
            d = json.loads(d)

        self.from_dict(d)

    def from_dict(self, d):
        self.__dict__ = {}
        for key, value in d.items():
            if type(value) is dict:
                value = PyJSON(value)
            self.__dict__[key] = value

    def to_dict(self):
        d = {}
        for key, value in self.__dict__.items():
            if type(value) is PyJSON:
                value = value.to_dict()
            d[key] = value
        return d

    def __repr__(self):
        return str(self.to_dict())

    def __setitem__(self, key, value):
        self.__dict__[key] = value

    def __getitem__(self, key):
        return self.__dict__[key]

json_str = """... JSON string ..."""

py_json = PyJSON(json_str)

其他回答

我认为最简单的解决方法是

import orjson  # faster then json =)
from typing import NamedTuple

_j = '{"name":"Иван","age":37,"mother":{"name":"Ольга","age":58},"children":["Маша","Игорь","Таня"],"married": true,' \
     '"dog":null} '


class PersonNameAge(NamedTuple):
    name: str
    age: int


class UserInfo(NamedTuple):
    name: str
    age: int
    mother: PersonNameAge
    children: list
    married: bool
    dog: str


j = orjson.loads(_j)
u = UserInfo(**j)

print(u.name, u.age, u.mother, u.children, u.married, u.dog)

>>> Ivan 37 {'name': 'Olga', 'age': 58} ['Mary', 'Igor', 'Jane'] True None

这不是一个很难的事情,我看到上面的答案,他们中的大多数在“列表”中有一个性能问题

这段代码比上面的代码快得多

import json 

class jsonify:
    def __init__(self, data):
        self.jsonify = data

    def __getattr__(self, attr):
        value = self.jsonify.get(attr)
        if isinstance(value, (list, dict)):
            return jsonify(value)
        return value

    def __getitem__(self, index):
        value = self.jsonify[index]
        if isinstance(value, (list, dict)):
            return jsonify(value)
        return value

    def __setitem__(self, index, value):
        self.jsonify[index] = value

    def __delattr__(self, index):
        self.jsonify.pop(index)

    def __delitem__(self, index):
        self.jsonify.pop(index)

    def __repr__(self):
        return json.dumps(self.jsonify, indent=2, default=lambda x: str(x))

exmaple

response = jsonify(
    {
        'test': {
            'test1': [{'ok': 1}]
        }
    }
)
response.test -> jsonify({'test1': [{'ok': 1}]})
response.test.test1 -> jsonify([{'ok': 1}])
response.test.test1[0] -> jsonify({'ok': 1})
response.test.test1[0].ok -> int(1)

使用python 3.7,我发现下面的代码非常简单有效。在本例中,将JSON从文件加载到字典中:

class Characteristic:
    def __init__(self, characteristicName, characteristicUUID):
        self.characteristicName = characteristicName
        self.characteristicUUID = characteristicUUID


class Service:
    def __init__(self, serviceName, serviceUUID, characteristics):
        self.serviceName = serviceName
        self.serviceUUID = serviceUUID
        self.characteristics = characteristics

class Definitions:
    def __init__(self, services):
        self.services = []
        for service in services:
            self.services.append(Service(**service))


def main():
    parser = argparse.ArgumentParser(
        prog="BLEStructureGenerator",
        description="Taking in a JSON input file which lists all of the services, "
                    "characteristics and encoded properties. The encoding takes in "
                    "another optional template services and/or characteristics "
                    "file where the JSON file contents are applied to the templates.",
        epilog="Copyright Brown & Watson International"
    )

    parser.add_argument('definitionfile',
                        type=argparse.FileType('r', encoding='UTF-8'),
                        help="JSON file which contains the list of characteristics and "
                             "services in the required format")
    parser.add_argument('-s', '--services',
                        type=argparse.FileType('r', encoding='UTF-8'),
                        help="Services template file to be used for each service in the "
                             "JSON file list")
    parser.add_argument('-c', '--characteristics',
                        type=argparse.FileType('r', encoding='UTF-8'),
                        help="Characteristics template file to be used for each service in the "
                             "JSON file list")

    args = parser.parse_args()
    definition_dict = json.load(args.definitionfile)
    definitions = Definitions(**definition_dict)

更新

在Python3中,你可以使用SimpleNamespace和object_hook在一行中完成:

import json
from types import SimpleNamespace

data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'

# Parse JSON into an object with attributes corresponding to dict keys.
x = json.loads(data, object_hook=lambda d: SimpleNamespace(**d))
print(x.name, x.hometown.name, x.hometown.id)

旧答案(Python2)

在Python2中,你可以使用namedtuple和object_hook在一行中完成(但对于嵌套对象非常慢):

import json
from collections import namedtuple

data = '{"name": "John Smith", "hometown": {"name": "New York", "id": 123}}'

# Parse JSON into an object with attributes corresponding to dict keys.
x = json.loads(data, object_hook=lambda d: namedtuple('X', d.keys())(*d.values()))
print x.name, x.hometown.name, x.hometown.id

或者,为了便于重用:

def _json_object_hook(d): return namedtuple('X', d.keys())(*d.values())
def json2obj(data): return json.loads(data, object_hook=_json_object_hook)

x = json2obj(data)

如果希望它处理不是很好的属性名称的键,请检查namedtuple的rename参数。

这似乎是一个XY问题(问A实际问题在哪里B)。

问题的根源是:如何有效地引用/修改深嵌套的JSON结构,而不必做obj['foo']['bar'][42]['quux'],这带来了键入挑战,代码膨胀问题,可读性问题和错误捕获问题?

使用抢

from glom import glom

# Basic deep get

data = {'a': {'b': {'c': 'd'}}}

print(glom(data, 'a.b.c'))

它还将处理列表项:

我已经对一个简单的实现进行了基准测试:

def extract(J, levels):
    # Twice as fast as using glom
    for level in levels.split('.'):
        J = J[int(level) if level.isnumeric() else level]
    return J

... 并且在复杂的JSON对象上返回0.14ms,而朴素的impl则返回0.06ms。

它还可以处理复杂的查询,例如取出所有foo.bar.记录,其中.name == 'Joe Bloggs'

编辑:

另一种性能方法是递归地使用覆盖__getitem__和__getattr__的类:

class Ob:
    def __init__(self, J):
        self.J = J

    def __getitem__(self, index):
        return Ob(self.J[index])

    def __getattr__(self, attr):
        value = self.J.get(attr, None)
        return Ob(value) if type(value) in (list, dict) else value

现在你可以做:

ob = Ob(J)

# if you're fetching a final raw value (not list/dict
ob.foo.bar[42].quux.leaf

# for intermediate values
ob.foo.bar[42].quux.J

这一基准测试也出奇地好。与我之前的天真冲动相当。如果有人能找到一种方法来整理非叶查询的访问,请留下评论!