我想将JSON数据转换为Python对象。

我从Facebook API收到JSON数据对象,我想将其存储在数据库中。

我的当前视图在Django (Python)(请求。POST包含JSON):

response = request.POST
user = FbApiUser(user_id = response['id'])
user.name = response['name']
user.username = response['username']
user.save()

这很好,但是如何处理复杂的JSON数据对象呢? 如果我能以某种方式将这个JSON对象转换为易于使用的Python对象,是不是会更好?


当前回答

查看JSON模块文档中的专门化JSON对象解码一节。您可以使用它将JSON对象解码为特定的Python类型。

这里有一个例子:

class User(object):
    def __init__(self, name, username):
        self.name = name
        self.username = username

import json
def object_decoder(obj):
    if '__type__' in obj and obj['__type__'] == 'User':
        return User(obj['name'], obj['username'])
    return obj

json.loads('{"__type__": "User", "name": "John Smith", "username": "jsmith"}',
           object_hook=object_decoder)

print type(User)  # -> <type 'type'>

更新

如果你想通过json模块访问字典中的数据,可以这样做:

user = json.loads('{"__type__": "User", "name": "John Smith", "username": "jsmith"}')
print user['name']
print user['username']

就像一本普通的字典。

其他回答

如果你正在寻找将JSON或任何复杂字典的类型安全反序列化到python类中,我强烈推荐python 3.7+的pydantic。它不仅有一个简洁的API(不需要编写“helper”样板),可以与Python数据类集成,而且具有复杂和嵌套数据结构的静态和运行时类型验证。

使用示例:

from pydantic import BaseModel
from datetime import datetime

class Item(BaseModel):
    field1: str | int           # union
    field2: int | None = None   # optional
    field3: str = 'default'     # default values

class User(BaseModel):
    name: str | None = None
    username: str
    created: datetime           # default type converters
    items: list[Item] = []      # nested complex types

data = {
    'name': 'Jane Doe',
    'username': 'user1',
    'created': '2020-12-31T23:59:00+10:00',
    'items': [
        {'field1': 1, 'field2': 2},
        {'field1': 'b'},
        {'field1': 'c', 'field3': 'override'}
    ]
}

user: User = User(**data)

要了解更多细节和特性,请查看文档中的pydantic的rational部分。

这似乎是一个XY问题(问A实际问题在哪里B)。

问题的根源是:如何有效地引用/修改深嵌套的JSON结构,而不必做obj['foo']['bar'][42]['quux'],这带来了键入挑战,代码膨胀问题,可读性问题和错误捕获问题?

使用抢

from glom import glom

# Basic deep get

data = {'a': {'b': {'c': 'd'}}}

print(glom(data, 'a.b.c'))

它还将处理列表项:

我已经对一个简单的实现进行了基准测试:

def extract(J, levels):
    # Twice as fast as using glom
    for level in levels.split('.'):
        J = J[int(level) if level.isnumeric() else level]
    return J

... 并且在复杂的JSON对象上返回0.14ms,而朴素的impl则返回0.06ms。

它还可以处理复杂的查询,例如取出所有foo.bar.记录,其中.name == 'Joe Bloggs'

编辑:

另一种性能方法是递归地使用覆盖__getitem__和__getattr__的类:

class Ob:
    def __init__(self, J):
        self.J = J

    def __getitem__(self, index):
        return Ob(self.J[index])

    def __getattr__(self, attr):
        value = self.J.get(attr, None)
        return Ob(value) if type(value) in (list, dict) else value

现在你可以做:

ob = Ob(J)

# if you're fetching a final raw value (not list/dict
ob.foo.bar[42].quux.leaf

# for intermediate values
ob.foo.bar[42].quux.J

这一基准测试也出奇地好。与我之前的天真冲动相当。如果有人能找到一种方法来整理非叶查询的访问,请留下评论!

既然没有人给出了和我一样的答案,我就把它贴在这里。

这是一个健壮的类,可以轻松地在JSON str和dict之间来回转换,我已经从我的答案复制到另一个问题:

import json

class PyJSON(object):
    def __init__(self, d):
        if type(d) is str:
            d = json.loads(d)

        self.from_dict(d)

    def from_dict(self, d):
        self.__dict__ = {}
        for key, value in d.items():
            if type(value) is dict:
                value = PyJSON(value)
            self.__dict__[key] = value

    def to_dict(self):
        d = {}
        for key, value in self.__dict__.items():
            if type(value) is PyJSON:
                value = value.to_dict()
            d[key] = value
        return d

    def __repr__(self):
        return str(self.to_dict())

    def __setitem__(self, key, value):
        self.__dict__[key] = value

    def __getitem__(self, key):
        return self.__dict__[key]

json_str = """... JSON string ..."""

py_json = PyJSON(json_str)

已经有多种可行的答案,但有一些由个人制作的小型库可以满足大多数用户的需求。

json2object就是一个例子。给定一个已定义的类,它将json数据反序列化到您的自定义模型,包括自定义属性和子对象。

它的使用非常简单。一个来自图书馆wiki的例子:

从json2object导入jsontoobject作为Jo 类学生: def __init__(自我): 自我。firstName =无 自我。lastName = None 自我。courses =[课程(")] 类课程: 定义__init__(self, name): Self.name = name 数据= " '{ “firstName”:“詹姆斯”, “姓”:“债券”, “课程”:[{ “名称”:“战斗”}, { “名称”:“射击”} ] } “‘ model = Student() Result = jo.deserialize(数据,模型) print (result.courses [0] . name)

改进lovasoa非常好的答案。

如果你正在使用python 3.6+,你可以使用: PIP安装棉花糖-enum和 PIP安装棉花糖数据类

它简单且类型安全。

你可以在string-json中转换你的类,反之亦然:

从对象到字符串Json:

    from marshmallow_dataclass import dataclass
    user = User("Danilo","50","RedBull",15,OrderStatus.CREATED)
    user_json = User.Schema().dumps(user)
    user_json_str = user_json.data

从String Json到Object:

    json_str = '{"name":"Danilo", "orderId":"50", "productName":"RedBull", "quantity":15, "status":"Created"}'
    user, err = User.Schema().loads(json_str)
    print(user,flush=True)

类定义:

class OrderStatus(Enum):
    CREATED = 'Created'
    PENDING = 'Pending'
    CONFIRMED = 'Confirmed'
    FAILED = 'Failed'

@dataclass
class User:
    def __init__(self, name, orderId, productName, quantity, status):
        self.name = name
        self.orderId = orderId
        self.productName = productName
        self.quantity = quantity
        self.status = status

    name: str
    orderId: str
    productName: str
    quantity: int
    status: OrderStatus