以此为本,以此为本,以此为本,以此为本,以此为本,以此为本,以此为本。


如果您的列表来自列表理解,问题可以通过纠正理解更简单/直接解决;请参见Python列表理解;压缩列表?

在这里,最受欢迎的解决方案通常只包含一个“层”的清单。 查看清单不规则(自愿清单)的清单,解决方案完全清单一个深度清单的结构(重复,一般)。


当前回答

def flatten(itr):
    for x in itr:
        try:
            yield from flatten(x)
        except TypeError:
            yield x

使用:这是一个发电机,通常你想将它插入一个不可分割的构建器,如列表()或<<<<<<<<或使用它在一个为旋转。

这个解决方案的好处是:

工作任何类型的无缝(即使是未来的!)工作任何组合和深度的无缝工作,如果顶级包含无依赖物品,快速和高效(你可以平滑无缝的部分,没有浪费时间的剩余部分你不需要)多样性(你可以使用它来构建一个无缝的你的选择或在旋转)

注:由于所有 iterables 都是浮动的,所以线条分为单个字符的序列. 如果您不喜欢/不喜欢这种行为,您可以使用下列版本,从浮动的 iterables 如线条和比特中进行过滤:

def flatten(itr):
    if type(itr) in (str,bytes):
        yield itr
    else:
        for x in itr:
            try:
                yield from flatten(x)
            except TypeError:
                yield x

其他回答

如果你想清理一切,并保持一个单独的元素列表,你也可以使用它。

list_of_lists = [[1,2], [2,3], [3,4]]
list(set.union(*[set(s) for s in list_of_lists]))

你可以简单地使用Pandas这样做:

import pandas as pd
pd.Series([[1, 2, 3], [4, 5, 6], [7], [8, 9]]).sum()

如果我想添加一些东西到以前的答案,这里是我的重复滑板功能,可以滑板不只是滑板列表,但也任何提供的容器或一般任何物品,可以扔出物品。

def flatten(iterable):
    # These types won't considered a sequence or generally a container
    exclude = str, bytes

    for i in iterable:
        try:
            if isinstance(i, exclude):
                raise TypeError
            iter(i)
        except TypeError:
            yield i
        else:
            yield from flatten(i)

这样,你可以排除你不想要的类型,如 str 或其他。

想法是,如果一个对象可以通过 iter(),它已经准备好产生物品,所以 iterable 甚至可以作为一个对象具有发明器表达式。

有人可以争论:为什么你写了这么一般的,当OP没有要求它?OK,你是对的,我只是觉得这可能帮助某人(就像它为我做的那样)。

测试案例:

lst1 = [1, {3}, (1, 6), [[3, 8]], [[[5]]], 9, ((((2,),),),)]
lst2 = ['3', B'A', [[[(i ** 2 for i in range(3))]]], range(3)]

print(list(flatten(lst1)))
print(list(flatten(lst2)))

出口:

[1, 3, 1, 6, 3, 8, 5, 9, 2]
['3', b'A', 0, 1, 4, 0, 1, 2]

您可以使用 itertools.chain():

>>> import itertools
>>> list2d = [[1,2,3], [4,5,6], [7], [8,9]]
>>> merged = list(itertools.chain(*list2d))

或者您可以使用 itertools.chain.from_iterable(),不需要与 * 运营商解包列表:

>>> import itertools
>>> list2d = [[1,2,3], [4,5,6], [7], [8,9]]
>>> merged = list(itertools.chain.from_iterable(list2d))

这种方法可能比 [分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类中的分类

$ python3 -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99;import itertools' 'list(itertools.chain.from_iterable(l))'
20000 loops, best of 5: 10.8 usec per loop
$ python3 -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' '[item for sublist in l for item in sublist]'
10000 loops, best of 5: 21.7 usec per loop
$ python3 -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99' 'sum(l, [])'
1000 loops, best of 5: 258 usec per loop
$ python3 -mtimeit -s'l=[[1,2,3],[4,5,6], [7], [8,9]]*99;from functools import reduce' 'reduce(lambda x,y: x+y,l)'
1000 loops, best of 5: 292 usec per loop
$ python3 --version
Python 3.7.5rc1

您也可以使用NumPy的公寓:

import numpy as np
list(np.array(l).flat)

它只有在超级列表具有相同的尺寸时才有效。