我来自Java世界,正在阅读Bruce Eckels的《Python 3 Patterns, Recipes and idiom》。

在阅读有关类的内容时,会继续说在Python中不需要声明实例变量。你只需要在构造函数中使用它们,它们就在那里了。

例如:

class Simple:
    def __init__(self, s):
        print("inside the simple constructor")
        self.s = s

    def show(self):
        print(self.s)

    def showMsg(self, msg):
        print(msg + ':', self.show())

如果这是真的,那么任何Simple类的对象都可以改变类外变量s的值。

例如:

if __name__ == "__main__":
    x = Simple("constructor argument")
    x.s = "test15" # this changes the value
    x.show()
    x.showMsg("A message")

在Java中,我们已经学习了公共/私有/受保护变量。这些关键字是有意义的,因为有时您希望类中的变量在类之外没有人可以访问。

为什么Python中不需要这个?


当前回答

自从我开始开发一个想要发布的包以来,我一直在考虑私有类属性和方法(后续阅读中称为成员)。它背后的想法从来都不是不可能覆盖这些成员,而是对那些接触它们的人发出警告。我想到了一些可能有用的解决办法。第一个解决方案在我最喜欢的Python书籍之一《Fluent Python》中使用。


技术1的优点:

它不太可能被意外覆盖。 它很容易理解和实现。 它比实例属性的前双下划线更容易处理。

*在书中使用了哈希符号,但你也可以使用整数转换为字符串。在Python中,禁止使用class .1

class Technique1:

    def __init__(self, name, value):
        setattr(self, f'private#{name}', value)
        setattr(self, f'1{name}', value)

技术1的缺点:

但是,使用这种技术不容易保护方法。这是可能的。 属性查找只能通过getattr实现 仍然没有对用户发出警告


我遇到的另一个解决方案是编写__setattr__。优点:

它很容易实现和理解 它与方法一起工作 查找不受影响 用户得到一个警告或错误

class Demonstration:

    def __init__(self):
        self.a = 1

    def method(self):
        return None

    def __setattr__(self, name, value):
        if not getattr(self, name, None):
            super().__setattr__(name, value)
        else:
            raise ValueError(f'Already reserved name: {name}')

d = Demonstration()
#d.a = 2
d.method = None

缺点:

您仍然可以重写类 为了让变量不仅仅是常量,您需要映射允许的输入。 子类仍然可以覆盖方法


为了防止子类覆盖方法,你可以使用__init_subclass__:

class Demonstration:
    __protected = ['method']

    def method(self):
        return None

    def __init_subclass__(cls):
        protected_methods = Demonstration.__protected
        subclass_methods = dir(cls)
        for i in protected_methods:
            p = getattr(Demonstration,i)
            j = getattr(cls, i)
            if not p is j:
                raise ValueError(f'Protected method "{i}" was touched')

可以看到,有很多方法可以保护类成员,但不能保证用户不会覆盖它们。这应该能给你们一些启发。最后,您还可以使用元类,但这可能会带来新的危险。这里使用的技术也非常简单,你应该看看文档,你可以找到这个技术的有用特性,并根据你的需要定制它们。

其他回答

Python对私有标识符的支持有限,通过一个自动在任何以两个下划线开头的标识符前加上类名的特性。在大多数情况下,这对程序员来说是透明的,但最终结果是任何以这种方式命名的变量都可以用作私有变量。

更多信息请参见这里。

一般来说,与其他语言相比,Python的面向对象实现有点原始。但实际上我很享受这个过程。这是一个概念上非常简单的实现,非常适合该语言的动态风格。

自从我开始开发一个想要发布的包以来,我一直在考虑私有类属性和方法(后续阅读中称为成员)。它背后的想法从来都不是不可能覆盖这些成员,而是对那些接触它们的人发出警告。我想到了一些可能有用的解决办法。第一个解决方案在我最喜欢的Python书籍之一《Fluent Python》中使用。


技术1的优点:

它不太可能被意外覆盖。 它很容易理解和实现。 它比实例属性的前双下划线更容易处理。

*在书中使用了哈希符号,但你也可以使用整数转换为字符串。在Python中,禁止使用class .1

class Technique1:

    def __init__(self, name, value):
        setattr(self, f'private#{name}', value)
        setattr(self, f'1{name}', value)

技术1的缺点:

但是,使用这种技术不容易保护方法。这是可能的。 属性查找只能通过getattr实现 仍然没有对用户发出警告


我遇到的另一个解决方案是编写__setattr__。优点:

它很容易实现和理解 它与方法一起工作 查找不受影响 用户得到一个警告或错误

class Demonstration:

    def __init__(self):
        self.a = 1

    def method(self):
        return None

    def __setattr__(self, name, value):
        if not getattr(self, name, None):
            super().__setattr__(name, value)
        else:
            raise ValueError(f'Already reserved name: {name}')

d = Demonstration()
#d.a = 2
d.method = None

缺点:

您仍然可以重写类 为了让变量不仅仅是常量,您需要映射允许的输入。 子类仍然可以覆盖方法


为了防止子类覆盖方法,你可以使用__init_subclass__:

class Demonstration:
    __protected = ['method']

    def method(self):
        return None

    def __init_subclass__(cls):
        protected_methods = Demonstration.__protected
        subclass_methods = dir(cls)
        for i in protected_methods:
            p = getattr(Demonstration,i)
            j = getattr(cls, i)
            if not p is j:
                raise ValueError(f'Protected method "{i}" was touched')

可以看到,有很多方法可以保护类成员,但不能保证用户不会覆盖它们。这应该能给你们一些启发。最后,您还可以使用元类,但这可能会带来新的危险。这里使用的技术也非常简单,你应该看看文档,你可以找到这个技术的有用特性,并根据你的需要定制它们。

它的文化。在Python中,不写入其他类的实例或类变量。在Java中,如果你真的想这样做,没有什么可以阻止你这样做——毕竟,你总是可以编辑类本身的源代码来达到同样的效果。Python放弃了安全的伪装,并鼓励程序员负责任。在实践中,这工作得非常好。

如果您出于某种原因想要模拟私有变量,您总是可以使用PEP 8中的__前缀。Python会修改像__foo这样的变量名,这样它们就不容易被包含它们的命名空间之外的代码看到(尽管如果你足够坚定,你可以绕过它,就像你可以绕过Java的保护一样)。

根据同样的约定,_前缀意味着_variable应该只在类(或模块)内部使用,即使技术上不阻止从其他地方访问它。你不会摆弄其他类的变量,比如__foo或_bar。

“在java中,我们学习了公共/私有/受保护变量”

“为什么在python中不需要这个?”

出于同样的原因,它在Java中不是必需的。

您可以自由使用或不使用private和protected。

作为Python和Java程序员,我发现私有和受保护是非常非常重要的设计概念。但实际上,在数万行Java和Python代码中,我从未真正使用过private或protected。

为什么不呢?

我的问题是"被谁保护?"

我团队中的其他程序员?他们有消息来源。当他们可以改变的时候,保护意味着什么?

其他团队的其他程序员?他们在同一家公司工作。只要打个电话,他们就能找到线人。

客户吗?这是一种雇佣式编程(通常)。客户机(通常)拥有代码。

那么,我到底在保护谁呢?

在Python 3中,如果你只是想“封装”类属性,就像在Java中一样,你可以这样做:

class Simple:
    def __init__(self, str):
        print("inside the simple constructor")
        self.__s = str

    def show(self):
        print(self.__s)

    def showMsg(self, msg):
        print(msg + ':', self.show())

要实例化此操作:

ss = Simple("lol")
ss.show()

注意:print(ss.__s)将抛出一个错误。

实际上,Python 3会混淆全局属性名。就像在Java中一样,它将此转换为“私有”属性。属性名仍然是全局的,但是以一种不可访问的方式,就像其他语言中的私有属性一样。

但是不要害怕。没关系。它也起作用了。;)