我有一个名为spam的数据集,其中包含58列和约3500行与垃圾邮件相关的数据。

我计划将来在这个数据集上运行一些线性回归,但我想事先做一些预处理,并将列标准化,使其具有零平均值和单位方差。

有人告诉我,最好的方法是用R,所以我想问,如何用R实现归一化?我已经正确加载了数据,我只是在寻找一些包或方法来执行这个任务。


当前回答

我假设你想要的是均值为0,标准差为1。如果你的数据在一个数据框架中,所有的列都是数值的,你可以简单地调用数据上的缩放函数来做你想做的事情。

dat <- data.frame(x = rnorm(10, 30, .2), y = runif(10, 3, 5))
scaled.dat <- scale(dat)

# check that we get mean of 0 and sd of 1
colMeans(scaled.dat)  # faster version of apply(scaled.dat, 2, mean)
apply(scaled.dat, 2, sd)

使用内置函数是有品位的。比如这只猫:

其他回答

我假设你想要的是均值为0,标准差为1。如果你的数据在一个数据框架中,所有的列都是数值的,你可以简单地调用数据上的缩放函数来做你想做的事情。

dat <- data.frame(x = rnorm(10, 30, .2), y = runif(10, 3, 5))
scaled.dat <- scale(dat)

# check that we get mean of 0 and sd of 1
colMeans(scaled.dat)  # faster version of apply(scaled.dat, 2, mean)
apply(scaled.dat, 2, sd)

使用内置函数是有品位的。比如这只猫:

当我使用Dason提出的解决方案时,而不是得到一个数据帧作为结果,我得到了一个数字向量(我的df的缩放值)。

为了防止有人遇到同样的问题,你必须在代码中添加as.data.frame(),就像这样:

df.scaled <- as.data.frame(scale(df))

我希望这对有同样问题的人有用!

dplyr包有两个函数可以做到这一点。

> require(dplyr)

要更改数据表的特定列,可以使用mutate_at()函数。要更改所有列,可以使用mutate_all。

下面是使用这些函数来标准化数据的简单示例。

改变特定的列:

dt = data.table(a = runif(3500), b = runif(3500), c = runif(3500))
dt = data.table(dt %>% mutate_at(vars("a", "c"), scale)) # can also index columns by number, e.g., vars(c(1,3))

> apply(dt, 2, mean)
            a             b             c 
 1.783137e-16  5.064855e-01 -5.245395e-17 

> apply(dt, 2, sd)
        a         b         c 
1.0000000 0.2906622 1.0000000 

改变所有列:

dt = data.table(a = runif(3500), b = runif(3500), c = runif(3500))
dt = data.table(dt %>% mutate_all(scale))

> apply(dt, 2, mean)
            a             b             c 
-1.728266e-16  9.291994e-17  1.683551e-16 

> apply(dt, 2, sd)
a b c 
1 1 1 

'插入'包提供了预处理数据的方法(例如居中和缩放)。你也可以使用下面的代码:

library(caret)
# Assuming goal class is column 10
preObj <- preProcess(data[, -10], method=c("center", "scale"))
newData <- predict(preObj, data[, -10])

详情:http://www.inside-r.org/node/86978

下面的代码可能是实现这一目标的最短方法。

dataframe <- apply(dataframe, 2, scale)