Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
我最近创建了金枪鱼,用于可视化Python运行时和导入配置文件;这在这里可能会有所帮助。
使用安装
pip install tuna
创建运行时配置文件
python3 -m cProfile -o program.prof yourfile.py
或导入配置文件(需要Python 3.7+)
python3 -X importprofile yourfile.py 2> import.log
那就把金枪鱼放在档案里
tuna program.prof
其他回答
在Virtaal的源代码中,有一个非常有用的类和装饰器,它可以使分析(甚至对于特定的方法/函数)非常简单。然后可以在KCacheGrind中非常舒适地查看输出。
这取决于您希望从分析中看到什么。简单的时间度量可以由(bash)给出。
time python python_prog.py
甚至“/usr/bin/time”也可以使用“--verbose”标志输出详细的度量。
为了检查每个函数给出的时间度量,并更好地了解在函数上花费的时间,可以使用python中的内置cProfile。
进入更详细的指标,如绩效,时间不是唯一的指标。您可以担心内存、线程等问题。分析选项:line_profiler是另一个通常用于逐行查找定时度量的分析器。2.memory_profiler是一个评测内存使用情况的工具。3.heapy(来自项目Guppy)描述如何使用堆中的对象。
这些是我常用的一些。但如果你想了解更多,试试看这本书这是一本非常好的书,讲述了如何从性能出发。您可以转到使用Cython和JIT(实时)编译的python的高级主题。
python wiki是一个用于分析资源的绝佳页面:http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code
python文档也是如此:http://docs.python.org/library/profile.html
如Chris Lawlor所示,cProfile是一个很棒的工具,可以很容易地打印到屏幕上:
python -m cProfile -s time mine.py <args>
或存档:
python -m cProfile -o output.file mine.py <args>
PS>如果您使用的是Ubuntu,请确保安装python配置文件
apt-get install python-profiler
如果输出到文件,可以使用以下工具获得良好的可视化效果
PyCallGraph:创建调用图图像的工具安装:
pip install pycallgraph
run:
pycallgraph mine.py args
视图:
gimp pycallgraph.png
你可以使用任何你喜欢的方式来查看png文件,我使用了gimp不幸的是,我经常
dot:graph对于cairo渲染器位图太大。缩放0.257079以适合
这使我的图像变得难以使用。所以我通常创建svg文件:
pycallgraph -f svg -o pycallgraph.svg mine.py <args>
PS>确保安装graphviz(提供点程序):
pip install graphviz
使用gprof2dot通过@maxy/@quodlibetor绘制替代图形:
pip install gprof2dot
python -m cProfile -o profile.pstats mine.py
gprof2dot -f pstats profile.pstats | dot -Tsvg -o mine.svg
有很多很好的答案,但它们要么使用命令行,要么使用一些外部程序来分析和/或排序结果。
我真的错过了在IDE(eclipsePyDev)中使用而不接触命令行或安装任何东西的方法。所以就在这里。
无命令行分析
def count():
from math import sqrt
for x in range(10**5):
sqrt(x)
if __name__ == '__main__':
import cProfile, pstats
cProfile.run("count()", "{}.profile".format(__file__))
s = pstats.Stats("{}.profile".format(__file__))
s.strip_dirs()
s.sort_stats("time").print_stats(10)
有关更多信息,请参阅文档或其他答案。
Scalene是一个新的python分析器,它涵盖了许多用例,对性能的影响最小:
https://github.com/plasma-umass/scalene
它可以在非常精细的水平上评测CPU、GPU和内存利用率。它还特别支持多线程/并行化的python代码。