Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。

描述Python程序运行时间的好方法是什么?


当前回答

这取决于您希望从分析中看到什么。简单的时间度量可以由(bash)给出。

time python python_prog.py

甚至“/usr/bin/time”也可以使用“--verbose”标志输出详细的度量。

为了检查每个函数给出的时间度量,并更好地了解在函数上花费的时间,可以使用python中的内置cProfile。

进入更详细的指标,如绩效,时间不是唯一的指标。您可以担心内存、线程等问题。分析选项:line_profiler是另一个通常用于逐行查找定时度量的分析器。2.memory_profiler是一个评测内存使用情况的工具。3.heapy(来自项目Guppy)描述如何使用堆中的对象。

这些是我常用的一些。但如果你想了解更多,试试看这本书这是一本非常好的书,讲述了如何从性能出发。您可以转到使用Cython和JIT(实时)编译的python的高级主题。

其他回答

@Maxy对这个答案的评论对我帮助很大,我认为它应该得到自己的答案:我已经有了cProfile生成的.pstats文件,我不想用pycallgraph重新运行这些文件,所以我使用了gprof2dot,得到了很好的svgs:

$ sudo apt-get install graphviz
$ git clone https://github.com/jrfonseca/gprof2dot
$ ln -s "$PWD"/gprof2dot/gprof2dot.py ~/bin
$ cd $PROJECT_DIR
$ gprof2dot.py -f pstats profile.pstats | dot -Tsvg -o callgraph.svg

还有BLAM!

它使用点(与pycallgraph使用的相同),因此输出看起来类似。我觉得gprof2dot丢失的信息更少:

我发现,如果您不想使用命令行选项,该功能快速且易于使用。

要使用,只需在要分析的每个函数上方添加@profile。

def profile(fnc):
    """
    Profiles any function in following class just by adding @profile above function
    """
    import cProfile, pstats, io
    def inner (*args, **kwargs):
        pr = cProfile.Profile()
        pr.enable()
        retval = fnc (*args, **kwargs)
        pr.disable()
        s = io.StringIO()
        sortby = 'cumulative'   #Ordered
        ps = pstats.Stats(pr,stream=s).strip_dirs().sort_stats(sortby)
        n=10                    #reduced the list to be monitored
        ps.print_stats(n)
        #ps.dump_stats("profile.prof")
        print(s.getvalue())
        return retval
    return inner 

每个函数的输出如下

   Ordered by: cumulative time
   List reduced from 38 to 10 due to restriction <10>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.002    0.002 3151212474.py:37(get_pdf_page_count)
        1    0.000    0.000    0.002    0.002 fitz.py:3604(__init__)
        1    0.001    0.001    0.001    0.001 {built-in method fitz._fitz.new_Document}
        1    0.000    0.000    0.000    0.000 fitz.py:5207(__del__)
        1    0.000    0.000    0.000    0.000 {built-in method fitz._fitz.delete_Document}
        1    0.000    0.000    0.000    0.000 fitz.py:4816(init_doc)
        1    0.000    0.000    0.000    0.000 fitz.py:5197(_reset_page_refs)
        1    0.000    0.000    0.000    0.000 fitz.py:4821(<listcomp>)
       11    0.000    0.000    0.000    0.000 fitz.py:4054(_getMetadata)
        1    0.000    0.000    0.000    0.000 weakref.py:241(values)

只有终端(也是最简单的)解决方案,以防所有这些花哨的UI无法安装或运行:完全忽略cProfile并将其替换为pyinstrument,它将在执行后立即收集并显示调用树。

安装:

$ pip install pyinstrument

配置文件和显示结果:

$ python -m pyinstrument ./prog.py

适用于蟒蛇2和3。

[编辑]这里可以找到API的文档,用于分析代码的一部分。

在Virtaal的源代码中,有一个非常有用的类和装饰器,它可以使分析(甚至对于特定的方法/函数)非常简单。然后可以在KCacheGrind中非常舒适地查看输出。

我最近创建了金枪鱼,用于可视化Python运行时和导入配置文件;这在这里可能会有所帮助。

使用安装

pip install tuna

创建运行时配置文件

python3 -m cProfile -o program.prof yourfile.py

或导入配置文件(需要Python 3.7+)

python3 -X importprofile yourfile.py 2> import.log

那就把金枪鱼放在档案里

tuna program.prof