Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
Project Euler和其他编码竞赛通常有最长的运行时间,或者人们吹嘘他们的特定解决方案运行速度有多快。对于Python,有时方法有些笨拙——即向__main__添加计时代码。
描述Python程序运行时间的好方法是什么?
当前回答
pprofile文件
line_profiler(此处已介绍)也启发了pprofile,其描述如下:
行粒度、线程感知确定性和统计纯python剖面仪
它提供了line_profiler的行粒度,是纯Python,可以用作独立命令或模块,甚至可以生成callgrind格式的文件,这些文件可以很容易地使用[k|q]cachegrind进行分析。
vprof公司
还有vprof,一个Python包,描述如下:
[…]为各种Python程序特性(如运行时间和内存使用)提供丰富的交互式可视化。
其他回答
想知道python脚本到底在做什么吗?输入检查外壳。Inspect Shell允许您打印/更改全局并运行函数,而不中断正在运行的脚本。现在有了自动完成和命令历史记录(仅在linux上)。Inspect Shell不是pdb样式的调试器。
https://github.com/amoffat/Inspect-Shell
你可以用它(还有你的手表)。
cProfile非常适合于分析,而kcachegrind非常适合于可视化结果。中间的pyprov2calltree处理文件转换。
python -m cProfile -o script.profile script.py
pyprof2calltree -i script.profile -o script.calltree
kcachegrind script.calltree
所需的系统包:
kcachegrind(Linux)、qcachegrind(MacOs)
Ubuntu上的设置:
apt-get install kcachegrind
pip install pyprof2calltree
结果:
cProfile非常适合快速分析,但大多数时候它都以错误结束。函数runctx通过正确初始化环境和变量来解决这个问题,希望它对某些人有用:
import cProfile
cProfile.runctx('foo()', None, locals())
根据乔·肖(Joe Shaw)关于多线程代码无法按预期工作的回答,我认为cProfile中的runcall方法只是围绕着已配置的函数调用执行self.enable()和self.disable()调用,因此您可以简单地自己执行,并在对现有代码的干扰最小的情况下使用任何代码。
我最近创建了金枪鱼,用于可视化Python运行时和导入配置文件;这在这里可能会有所帮助。
使用安装
pip install tuna
创建运行时配置文件
python3 -m cProfile -o program.prof yourfile.py
或导入配置文件(需要Python 3.7+)
python3 -X importprofile yourfile.py 2> import.log
那就把金枪鱼放在档案里
tuna program.prof