如何从列表中删除重复项,同时保持顺序?使用集合删除重复项会破坏原始顺序。 是否有内置的或python的习语?


当前回答

5倍更快减少变种,但更复杂

>>> l = [5, 6, 6, 1, 1, 2, 2, 3, 4]
>>> reduce(lambda r, v: v in r[1] and r or (r[0].append(v) or r[1].add(v)) or r, l, ([], set()))[0]
[5, 6, 1, 2, 3, 4]

解释:

default = (list(), set())
# use list to keep order
# use set to make lookup faster

def reducer(result, item):
    if item not in result[1]:
        result[0].append(item)
        result[1].add(item)
    return result

>>> reduce(reducer, l, default)[0]
[5, 6, 1, 2, 3, 4]

其他回答

一个简单的递归解决方案:

def uniquefy_list(a):
    return uniquefy_list(a[1:]) if a[0] in a[1:] else [a[0]]+uniquefy_list(a[1:]) if len(a)>1 else [a[0]]

如果你需要一个班轮,那么这可能会有帮助:

reduce(lambda x, y: x + y if y[0] not in x else x, map(lambda x: [x],lst))

... 应该工作,但纠正我,如果我错了

MizardX的答案提供了多种方法的良好集合。

这是我自言自语时想到的:

mylist = [x for i,x in enumerate(mylist) if x not in mylist[i+1:]]

如果你经常使用pandas,并且美学优先于性能,那么考虑内置函数pandas. series .drop_duplicate:

    import pandas as pd
    import numpy as np

    uniquifier = lambda alist: pd.Series(alist).drop_duplicates().tolist()

    # from the chosen answer 
    def f7(seq):
        seen = set()
        seen_add = seen.add
        return [ x for x in seq if not (x in seen or seen_add(x))]

    alist = np.random.randint(low=0, high=1000, size=10000).tolist()

    print uniquifier(alist) == f7(alist)  # True

时间:

    In [104]: %timeit f7(alist)
    1000 loops, best of 3: 1.3 ms per loop
    In [110]: %timeit uniquifier(alist)
    100 loops, best of 3: 4.39 ms per loop

借用Haskell为列表定义nub函数时使用的递归思想,这将是一种递归方法:

def unique(lst):
    return [] if lst==[] else [lst[0]] + unique(filter(lambda x: x!= lst[0], lst[1:]))

例如:

In [118]: unique([1,5,1,1,4,3,4])
Out[118]: [1, 5, 4, 3]

我对不断增长的数据大小进行了尝试,看到了次线性的时间复杂度(不是确定的,但建议这对于普通数据应该没问题)。

In [122]: %timeit unique(np.random.randint(5, size=(1)))
10000 loops, best of 3: 25.3 us per loop

In [123]: %timeit unique(np.random.randint(5, size=(10)))
10000 loops, best of 3: 42.9 us per loop

In [124]: %timeit unique(np.random.randint(5, size=(100)))
10000 loops, best of 3: 132 us per loop

In [125]: %timeit unique(np.random.randint(5, size=(1000)))
1000 loops, best of 3: 1.05 ms per loop

In [126]: %timeit unique(np.random.randint(5, size=(10000)))
100 loops, best of 3: 11 ms per loop

我还认为有趣的是,这可以很容易地通过其他运算推广到唯一性。是这样的:

import operator
def unique(lst, cmp_op=operator.ne):
    return [] if lst==[] else [lst[0]] + unique(filter(lambda x: cmp_op(x, lst[0]), lst[1:]), cmp_op)

例如,你可以传入一个函数,它使用舍入到同一个整数的概念,就像它是“相等”的唯一性目的,像这样:

def test_round(x,y):
    return round(x) != round(y)

那么unique(some_list, test_round)将提供列表中唯一的元素,其中唯一性不再意味着传统的相等性(这是通过使用任何类型的基于集或基于字典键的方法来解决这个问题),而是意味着对于每个元素可能舍入的整数K,只取第一个舍入到K的元素,例如:

In [6]: unique([1.2, 5, 1.9, 1.1, 4.2, 3, 4.8], test_round)
Out[6]: [1.2, 5, 1.9, 4.2, 3]