我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。

数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?

问答来源:

slashdot.org

cleaton.net


当前回答

您只需要按顺序存储数字之间的差异,并使用编码来压缩这些序列号。我们有2^23位。我们将它分成6位块,让最后一位表示这个数字是否扩展到另外6位(5位加上扩展块)。

因此,000010是1,000100是2。000001100000表示128。现在,我们考虑用最坏的类型来表示不超过10,000,000的数字序列的差异。可能有10000000 /2^5的差异大于2^5,10000000 /2^10的差异大于2^10,10000000 /2^15的差异大于2^15,等等。

所以,我们把表示这个序列所需要的比特数相加。我们有1,000,000*6 +汇总(10,000,000/2^5)*6+汇总(10,000,000/2^10)*6+汇总(10,000,000/2^15)*6+汇总(10,000,000/2^20)*4=7935479。

2^24 = 8388608。由于8388608 > 7935479,我们应该很容易有足够的内存。我们可能还需要一点内存来存储插入新数字时的和。然后我们遍历这个序列,找到插入新数字的位置,如果必要的话减少下一个差值,并将它之后的所有内容都右移。

其他回答

基数树表示可以接近于处理这个问题,因为基数树利用了“前缀压缩”的优势。但是很难想象一个基树表表法可以在一个字节中表示单个节点——两个可能是极限。

但是,不管数据是如何表示的,一旦它被排序,它就可以以前缀压缩的形式存储,其中数字10、11和12将由001b、001b、001b表示,表示从前一个数字增加1。那么,也许10101b表示增量5,1101001b表示增量9,以此类推。

在所有可能的输入中,这个问题只有一个解决方案。作弊。

通过TCP读取m个值,其中m接近内存中可排序的最大值,可能是n/4。 对250,000(大约)个数字进行排序并输出。 重复做另外3个四分之三。 让接收方在处理时合并接收到的4个数字列表。(这并不比使用单个列表慢多少。)

你用的是哪种电脑?它可能没有任何其他“正常”的本地存储,但它是否有视频RAM,例如?100万像素x每像素32位(比如说)非常接近你所需的数据输入大小。

(我主要是问旧的Acorn RISC PC的内存,如果你选择低分辨率或低颜色深度的屏幕模式,它可以“借用”VRAM来扩展可用的系统RAM !)这在只有几MB普通RAM的机器上非常有用。

我将利用TCP的重传行为。

让TCP组件创建一个大的接收窗口。 收到一定数量的包,但没有发送ACK。 处理这些传递,创建一些(前缀)压缩数据结构 对最后一个不再需要的数据包发送重复的ack /等待重传超时 转到2 所有数据包被接受

这假设了桶或多次传递的某种好处。

可能是通过对批次/桶进行排序并合并它们。->根树

使用这种技术接受并排序前80%,然后读取后20%,验证后20%不包含将落在最低数字的前20%的数字。然后发送最低的20%的数字,从内存中删除,接受剩下的20%的新数字并合并。**

在10^8的范围内有10^6个值,所以平均每100个码点有一个值。存储第N个点到第(N+1)个点的距离。重复值的跳过值为0。这意味着跳跃平均需要7比特来存储,所以100万个跳跃将很适合我们的800万比特存储空间。

这些跳跃需要被编码成一个比特流,比如通过霍夫曼编码。插入是通过遍历比特流并在新值之后重写。通过遍历并写出隐含值来输出。出于实用性考虑,它可能被做成10^4个列表,每个列表包含10^4个代码点(平均100个值)。

随机数据的霍夫曼树可以通过假设跳跃长度上的泊松分布(均值=方差=100)先验地构建,但可以在输入上保留真实的统计数据,并用于生成处理病理病例的最佳树。