我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。

数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?

问答来源:

slashdot.org

cleaton.net


当前回答

谷歌的(坏)方法,从HN线程。存储rle风格的计数。

你的初始数据结构是“99999999:0”(都是零,没有看到任何数字),然后假设你看到了数字3,866,344,那么你的数据结构就变成了“3866343:0,1:1,96133654:0”,你可以看到数字总是在零位数和1位数之间交替,所以你可以假设奇数代表0位,偶数代表1位。这就变成了(3866343,1,96133654)

他们的问题似乎不包括副本,但让我们假设他们使用“0:1”来表示副本。

大问题#1:1M个整数的插入将花费很长时间。

大问题#2:像所有的普通增量编码解决方案一样,一些分布不能用这种方式覆盖。例如,1m整数,距离为0:99(例如,每个整数+99)。现在考虑相同的情况,但随机距离在0:99的范围内。(注:99999999/1000000 = 99.99)

谷歌的方法既不值得(缓慢),也不正确。但要为他们辩护,他们的问题可能略有不同。

其他回答

Gilmanov的答案在假设上是非常错误的。它开始基于毫无意义的一百万个连续整数进行推测。这意味着没有差距。这些随机的间隙,不管有多小,真的是一个糟糕的主意。

你自己试试。获得100万个27位随机整数,对它们排序,用7-Zip, xz压缩,任何你想要的LZMA。结果超过1.5 MB。上面的前提是连续数字的压缩。即使是增量编码也超过1.1 MB。没关系,这使用了超过100 MB的RAM进行压缩。因此,即使压缩的整数也不适合这个问题,更不用说运行时RAM的使用了。

让我难过的是,人们竟然投票支持漂亮的图像和合理化。

#include <stdint.h>
#include <stdlib.h>
#include <time.h>

int32_t ints[1000000]; // Random 27-bit integers

int cmpi32(const void *a, const void *b) {
    return ( *(int32_t *)a - *(int32_t *)b );
}

int main() {
    int32_t *pi = ints; // Pointer to input ints (REPLACE W/ read from net)

    // Fill pseudo-random integers of 27 bits
    srand(time(NULL));
    for (int i = 0; i < 1000000; i++)
        ints[i] = rand() & ((1<<27) - 1); // Random 32 bits masked to 27 bits

    qsort(ints, 1000000, sizeof (ints[0]), cmpi32); // Sort 1000000 int32s

    // Now delta encode, optional, store differences to previous int
    for (int i = 1, prev = ints[0]; i < 1000000; i++) {
        ints[i] -= prev;
        prev    += ints[i];
    }

    FILE *f = fopen("ints.bin", "w");
    fwrite(ints, 4, 1000000, f);
    fclose(f);
    exit(0);

}

现在用LZMA压缩ints.bin…

    $ xz -f --keep ints.bin       # 100 MB RAM
    $ 7z a ints.bin.7z ints.bin   # 130 MB RAM
    $ ls -lh ints.bin*
        3.8M ints.bin
        1.1M ints.bin.7z
        1.2M ints.bin.xz

如果数字的范围是有限的(只能有2个8位数,或者只有10个不同的8位数),那么你可以编写一个优化的排序算法。但如果你想对所有可能的8位数进行排序,这在内存那么少的情况下是不可能的。

(我原来的答案是错误的,对不起,数学不好,见下面的休息。)

这个怎么样?

前27位存储您所看到的最小数字,然后是与下一个数字的差值,编码如下:5位存储用于存储差值的位数,然后是差值。使用00000表示您再次看到了该数字。

这是因为插入的数字越多,数字之间的平均差值就越小,所以当你添加更多的数字时,你用更少的比特来存储差值。我想这叫做增量表。

我能想到的最糟糕的情况是所有数字都等距(以100为间隔),例如假设0是第一个数字:

000000000000000000000000000 00111 1100100
                            ^^^^^^^^^^^^^
                            a million times

27 + 1,000,000 * (5+7) bits = ~ 427k

Reddit来拯救你!

如果你要做的只是把它们排序,这个问题就简单了。它需要122k(100万比特)来存储你看到的数字(如果看到0,则第0位,如果看到2300,则第2300位,等等。

读取数字,将它们存储在位域中,然后在保持计数的同时将位移出。

但是,你必须记住你看过多少。我受到上面的子列表答案的启发,想出了这个方案:

用2位或27位代替1位:

00表示你没有看到这个数字。 01表示你看过一次 1表示你看过,接下来的26位是看了多少次。

我认为这是可行的:如果没有重复,你就有一个244k的列表。 在最坏的情况下,你看到每个数字两次(如果你看到一个数字三次,它会缩短列表的其余部分),这意味着你不止一次看到了50,000个,你0次或1次看到了950,000个项目。

50,000 * 27 + 950,000 * 2 = 396.7k.

如果你使用以下编码,你可以做进一步的改进:

0表示你没有看到这个数字 10表示你看过一次 11是你计数的方式

这将导致平均280.7k的存储空间。

编辑:我周日早上的数学算错了。

最坏的情况是,我们两次看到50万个数字,所以数学就变成了:

500,000 *27 + 500,000 *2 = 1.77M

交替编码导致平均存储为

500,000 * 27 + 500,000 = 1.70M

: (

你最多要数到99,999,999,并在沿途标明1,000,000个站点。因此,可以使用位流进行解释,即1表示递增计数器,0表示输出数字。如果流中的前8位是00110010,到目前为止我们将有0,0,2,2,3。

Log (99,999,999 + 1,000,000) / Log(2) = 26.59。你的内存中有2^28位。你只需要用一半!

谷歌的(坏)方法,从HN线程。存储rle风格的计数。

你的初始数据结构是“99999999:0”(都是零,没有看到任何数字),然后假设你看到了数字3,866,344,那么你的数据结构就变成了“3866343:0,1:1,96133654:0”,你可以看到数字总是在零位数和1位数之间交替,所以你可以假设奇数代表0位,偶数代表1位。这就变成了(3866343,1,96133654)

他们的问题似乎不包括副本,但让我们假设他们使用“0:1”来表示副本。

大问题#1:1M个整数的插入将花费很长时间。

大问题#2:像所有的普通增量编码解决方案一样,一些分布不能用这种方式覆盖。例如,1m整数,距离为0:99(例如,每个整数+99)。现在考虑相同的情况,但随机距离在0:99的范围内。(注:99999999/1000000 = 99.99)

谷歌的方法既不值得(缓慢),也不正确。但要为他们辩护,他们的问题可能略有不同。