我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。

数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?

问答来源:

slashdot.org

cleaton.net


当前回答

我在这里的建议很大程度上归功于Dan的解决方案

首先,我假设解决方案必须处理所有可能的输入列表。我认为流行的答案并没有做出这样的假设(在我看来这是一个巨大的错误)。

众所周知,任何形式的无损压缩都不会减小所有输入的大小。

所有流行的答案都假设它们能够有效地应用压缩来允许它们有额外的空间。事实上,一个足够大的额外空间块,以未压缩的形式保存他们部分完成的列表的一部分,并允许他们执行排序操作。这只是一个糟糕的假设。

对于这样的解决方案,任何了解如何进行压缩的人都能够设计一些不能很好地压缩该方案的输入数据,并且“解决方案”很可能会由于空间不足而崩溃。

相反,我采用数学方法。我们可能的输出是所有长度为LEN的列表,由0..MAX范围内的元素组成。这里LEN是1,000,000,MAX是100,000,000。

对于任意的LEN和MAX,编码此状态所需的比特数为:

Log2(MAX multichoice LEN)

因此,对于我们的数字,一旦我们完成了接收和排序,我们将需要至少Log2(100,000,000 MC 1,000,000)位来存储我们的结果,以一种能够唯一区分所有可能输出的方式。

这是~= 988kb。所以我们有足够的空间来存放结果。从这个角度来看,这是可能的。

[删除了无意义的漫谈,现在有更好的例子…]

最好的答案在这里。

另一个很好的答案是这里,它基本上使用插入排序作为函数,将列表扩展为一个元素(缓冲一些元素并进行预先排序,以允许一次插入多个元素,节省一些时间)。使用一个很好的压缩状态编码,7位增量的桶

其他回答

你试过转换成十六进制吗?

我可以看到前后文件大小都有了很大的减小;然后,用自由空间分步计算。也许,再次转换为dec, order,十六进制,另一个块,转换为dec, order…

对不起. .我不知道是否可行

# for i in {1..10000};do echo $(od -N1 -An -i /dev/urandom) ; done > 10000numbers
# for i in $(cat 10000numbers ); do printf '%x\n' $i; done > 10000numbers_hex
# ls -lah total 100K
drwxr-xr-x  2 diego diego 4,0K oct 22 22:32 .
drwx------ 39 diego diego  12K oct 22 22:31 ..
-rw-r--r--  1 diego diego  29K oct 22 22:33 10000numbers_hex
-rw-r--r--  1 diego diego  35K oct 22 22:31 10000numbers

我们有1 MB - 3 KB RAM = 2^23 - 3*2^13位= 8388608 - 24576 = 8364032位可用。

我们给出10^8范围内的10^6个数。这给出了~100 < 2^7 = 128的平均差距

让我们首先考虑一个比较简单的问题,即当所有间距都< 128时,数字间距相当均匀。这很简单。只存储第一个数字和7位空白:

(27位)+ 10^6个7位间隔数=需要7000027位

注意重复的数字间隔为0。

但如果间隔大于127呢?

好吧,让我们直接表示小于127的间隙大小,但是127的间隙大小后面跟着一个连续的8位编码来表示实际的间隙长度:

 10xxxxxx xxxxxxxx                       = 127 .. 16,383
 110xxxxx xxxxxxxx xxxxxxxx              = 16384 .. 2,097,151

etc.

注意这个数字表示描述了它自己的长度,所以我们知道下一个间隙数何时开始。

对于小于127的小间隙,仍然需要7000027位。

可能有高达(10^8)/(2^7)= 781250个23位的间隙数,需要额外的16* 781250 = 12500,000位,这是太多了。我们需要一个更紧凑和缓慢增加的差距表示。

平均差距大小是100,所以如果我们把它们重新排序 [100, 99, 101, 98, 102,…], 2, 198, 1, 199, 0, 200, 201, 202,…] 然后用密集的二进制斐波那契基编码索引它,没有对零(例如,11011=8+5+2+1=16),数字用“00”分隔,然后我认为我们可以保持足够短的差距表示,但它需要更多的分析。

由于ROM大小不计算,因此除了TCP缓冲区外,不需要任何额外的RAM。只需要实现一个大的有限状态机。每个状态表示读入的多组数字。在读取了一百万个数字之后,只需打印出与所达到的状态相对应的数字。

在10^8的范围内有10^6个值,所以平均每100个码点有一个值。存储第N个点到第(N+1)个点的距离。重复值的跳过值为0。这意味着跳跃平均需要7比特来存储,所以100万个跳跃将很适合我们的800万比特存储空间。

这些跳跃需要被编码成一个比特流,比如通过霍夫曼编码。插入是通过遍历比特流并在新值之后重写。通过遍历并写出隐含值来输出。出于实用性考虑,它可能被做成10^4个列表,每个列表包含10^4个代码点(平均100个值)。

随机数据的霍夫曼树可以通过假设跳跃长度上的泊松分布(均值=方差=100)先验地构建,但可以在输入上保留真实的统计数据,并用于生成处理病理病例的最佳树。

假设这个任务是可能的。在输出之前,内存中会有一个百万个排序数字的表示。有多少种不同的表示法?由于可能有重复的数字,我们不能使用nCr(选择),但有一种叫做multichoose的操作,它适用于多集。

在0..99,999,999范围内有22e2436455种方法来选择一百万个数字。 这需要8,093,730位来表示每个可能的组合,或1,011,717字节。

所以理论上是可能的,如果你能想出一个合理(足够)的数字排序表。例如,一个疯狂的表示可能需要一个10MB的查找表或数千行代码。

但是,如果“1M RAM”意味着100万个字节,那么显然没有足够的空间。事实上,多5%的内存使它在理论上成为可能,这对我来说意味着表示必须非常有效,可能是不理智的。