我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。
数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?
问答来源:
slashdot.org
cleaton.net
我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。
数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?
问答来源:
slashdot.org
cleaton.net
当前回答
假设这个任务是可能的。在输出之前,内存中会有一个百万个排序数字的表示。有多少种不同的表示法?由于可能有重复的数字,我们不能使用nCr(选择),但有一种叫做multichoose的操作,它适用于多集。
在0..99,999,999范围内有22e2436455种方法来选择一百万个数字。 这需要8,093,730位来表示每个可能的组合,或1,011,717字节。
所以理论上是可能的,如果你能想出一个合理(足够)的数字排序表。例如,一个疯狂的表示可能需要一个10MB的查找表或数千行代码。
但是,如果“1M RAM”意味着100万个字节,那么显然没有足够的空间。事实上,多5%的内存使它在理论上成为可能,这对我来说意味着表示必须非常有效,可能是不理智的。
其他回答
诀窍是将算法状态表示为“增量计数器”=“+”和“输出计数器”=“!”字符的压缩流,这是一个整数多集。例如,集合{0,3,3,4}将被表示为“!+++!!+!”,后面跟着任意数量的“+”字符。要修改多集,您可以输出字符,每次只保持恒定的解压缩量,并在以压缩形式流回之前进行适当的更改。
细节
我们知道最终集合中恰好有10^6个数字,所以最多有10^6个“!”字符。我们还知道我们的范围大小为10^8,这意味着最多有10^8个“+”字符。10^6 "的排列方式!s在10^8 "+"s中的值是(10^8 + 10^6)选10^6,因此指定某种特定的排列需要大约0.965 MiB '的数据。那太紧了。
我们可以独立对待每个角色而不超出我们的配额。“+”字符正好是“!”字符的100倍,如果我们忘记了它们是相互依赖的,那么每个字符是“+”的概率就简化为100:1。100:101的几率对应于每个字符0.08位,对于几乎相同的~0.965 MiB(忽略依赖关系在这种情况下只有~12位的代价!)
The simplest technique for storing independent characters with known prior probability is Huffman coding. Note that we need an impractically large tree (A huffman tree for blocks of 10 characters has an average cost per block of about 2.4 bits, for a total of ~2.9 Mib. A huffman tree for blocks of 20 characters has an average cost per block of about 3 bits, which is a total of ~1.8 MiB. We're probably going to need a block of size on the order of a hundred, implying more nodes in our tree than all the computer equipment that has ever existed can store.). However, ROM is technically "free" according to the problem and practical solutions that take advantage of the regularity in the tree will look essentially the same.
伪代码
Have a sufficiently large huffman tree (or similar block-by-block compression data) stored in ROM Start with a compressed string of 10^8 "+" characters. To insert the number N, stream out the compressed string until N "+" characters have gone past then insert a "!". Stream the recompressed string back over the previous one as you go, keeping a constant amount of buffered blocks to avoid over/under-runs. Repeat one million times: [input, stream decompress>insert>compress], then decompress to output
我在这里的建议很大程度上归功于Dan的解决方案
首先,我假设解决方案必须处理所有可能的输入列表。我认为流行的答案并没有做出这样的假设(在我看来这是一个巨大的错误)。
众所周知,任何形式的无损压缩都不会减小所有输入的大小。
所有流行的答案都假设它们能够有效地应用压缩来允许它们有额外的空间。事实上,一个足够大的额外空间块,以未压缩的形式保存他们部分完成的列表的一部分,并允许他们执行排序操作。这只是一个糟糕的假设。
对于这样的解决方案,任何了解如何进行压缩的人都能够设计一些不能很好地压缩该方案的输入数据,并且“解决方案”很可能会由于空间不足而崩溃。
相反,我采用数学方法。我们可能的输出是所有长度为LEN的列表,由0..MAX范围内的元素组成。这里LEN是1,000,000,MAX是100,000,000。
对于任意的LEN和MAX,编码此状态所需的比特数为:
Log2(MAX multichoice LEN)
因此,对于我们的数字,一旦我们完成了接收和排序,我们将需要至少Log2(100,000,000 MC 1,000,000)位来存储我们的结果,以一种能够唯一区分所有可能输出的方式。
这是~= 988kb。所以我们有足够的空间来存放结果。从这个角度来看,这是可能的。
[删除了无意义的漫谈,现在有更好的例子…]
最好的答案在这里。
另一个很好的答案是这里,它基本上使用插入排序作为函数,将列表扩展为一个元素(缓冲一些元素并进行预先排序,以允许一次插入多个元素,节省一些时间)。使用一个很好的压缩状态编码,7位增量的桶
我们可以利用网络堆栈,在我们得到所有数字之前,按顺序发送数字。如果你发送1M的数据,TCP/IP会把它分解成1500字节的数据包,并按照目标发送。每个包将被赋予一个序列号。
我们可以用手来做。在填满内存之前,我们可以对现有的数据进行排序,并将列表发送给目标,但在每个数字周围的序列中留下空洞。然后用同样的方法处理第二个1/2的数字,使用序列中的这些洞。
远端的网络堆栈将按顺序组装结果数据流,然后将其提交给应用程序。
它使用网络来执行归并排序。这是一个完全的黑客,但我是受到之前列出的其他网络黑客的启发。
If the numbers are evenly distributed we can use Counting sort. We should keep the number of times that each number is repeated in an array. Available space is: 1 MB - 3 KB = 1045504 B or 8364032 bits Number of bits per number= 8364032/1000000 = 8 Therefore, we can store the number of times each number is repeated to the maximum of 2^8-1=255. Using this approach we have an extra 364032 bits unused that can be used to handle cases where a number is repeated more than 255 times. For example we can say a number 255 indicates a repetition greater than or equal to 255. In this case we should store a sequence of numbers+repetitions. We can handle 7745 special cases as shown bellow:
364032/(表示每个数字所需的位数+表示100万所需的位数)= 364032 / (27+20)=7745
我认为解决方案是结合视频编码的技术,即离散余弦变换。在数字视频中,不是将视频的亮度或颜色的变化记录为常规值,如110 112 115 116,而是从最后一个中减去每一个(类似于运行长度编码)。110 112 115 116变成110 2 3 1。这些值,2,3 1比原始值需要更少的比特。
So lets say we create a list of the input values as they arrive on the socket. We are storing in each element, not the value, but the offset of the one before it. We sort as we go, so the offsets are only going to be positive. But the offset could be 8 decimal digits wide which this fits in 3 bytes. Each element can't be 3 bytes, so we need to pack these. We could use the top bit of each byte as a "continue bit", indicating that the next byte is part of the number and the lower 7 bits of each byte need to be combined. zero is valid for duplicates.
当列表填满时,数字之间的距离应该越来越近,这意味着平均只有1个字节用于确定到下一个值的距离。7位值和1位偏移(如果方便的话),但可能存在一个“继续”值需要少于8位的最佳点。
总之,我做了一些实验。我使用随机数生成器,我可以将100万个排序过的8位十进制数字放入大约1279000字节。每个数字之间的平均间隔始终是99…
public class Test {
public static void main(String[] args) throws IOException {
// 1 million values
int[] values = new int[1000000];
// create random values up to 8 digits lrong
Random random = new Random();
for (int x=0;x<values.length;x++) {
values[x] = random.nextInt(100000000);
}
Arrays.sort(values);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
int av = 0;
writeCompact(baos, values[0]); // first value
for (int x=1;x<values.length;x++) {
int v = values[x] - values[x-1]; // difference
av += v;
System.out.println(values[x] + " diff " + v);
writeCompact(baos, v);
}
System.out.println("Average offset " + (av/values.length));
System.out.println("Fits in " + baos.toByteArray().length);
}
public static void writeCompact(OutputStream os, long value) throws IOException {
do {
int b = (int) value & 0x7f;
value = (value & 0x7fffffffffffffffl) >> 7;
os.write(value == 0 ? b : (b | 0x80));
} while (value != 0);
}
}