我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
我想从
['$a', '$b', '$c', '$d', '$e']
to
['a', 'b', 'c', 'd', 'e']
当前回答
df.rename(index=str, columns={'A':'a', 'B':'b'})
pandas.DataFrame.rename
其他回答
让我们通过一个小例子来理解重命名。。。
使用映射重命名列:df=pd.DataFrame({“A”:[1,2,3],“B”:[4,5,6]})#创建列名为A和B的dfdf.reame({“A”:“new_A”,“B”:“new_B”},axis='columns',inplace=True)#用'new_A'重命名列A,用'new_B'重命名列B输出:新a新b0 1 41 2 52 3 6使用映射重命名索引/Row_Name:df.reame({0:“x”,1:“y”,2:“z”},axis='index',inplace=True)#行名称被'x'、'y'和'z'替换。输出:新a新bx 142015年z 3 6
df = pd.DataFrame({'$a': [1], '$b': [1], '$c': [1], '$d': [1], '$e': [1]})
如果新列列表的顺序与现有列的顺序相同,则分配很简单:
new_cols = ['a', 'b', 'c', 'd', 'e']
df.columns = new_cols
>>> df
a b c d e
0 1 1 1 1 1
如果您有一个将旧列名键入到新列名的字典,可以执行以下操作:
d = {'$a': 'a', '$b': 'b', '$c': 'c', '$d': 'd', '$e': 'e'}
df.columns = df.columns.map(lambda col: d[col]) # Or `.map(d.get)` as pointed out by @PiRSquared.
>>> df
a b c d e
0 1 1 1 1 1
如果你没有列表或字典映射,你可以通过列表理解去掉前导$符号:
df.columns = [col[1:] if col[0] == '$' else col for col in df]
除了已经提供的解决方案之外,您还可以在读取文件时替换所有列。我们可以使用names和header=0来实现这一点。
首先,我们创建一个我们喜欢用作列名的名称列表:
import pandas as pd
ufo_cols = ['city', 'color reported', 'shape reported', 'state', 'time']
ufo.columns = ufo_cols
ufo = pd.read_csv('link to the file you are using', names = ufo_cols, header = 0)
在这种情况下,所有列名都将替换为列表中的名称。
# This way it will work
import pandas as pd
# Define a dictionary
rankings = {'test': ['a'],
'odi': ['E'],
't20': ['P']}
# Convert the dictionary into DataFrame
rankings_pd = pd.DataFrame(rankings)
# Before renaming the columns
print(rankings_pd)
rankings_pd.rename(columns = {'test':'TEST'}, inplace = True)
由于您只想删除所有列名中的$符号,因此只需执行以下操作:
df = df.rename(columns=lambda x: x.replace('$', ''))
OR
df.rename(columns=lambda x: x.replace('$', ''), inplace=True)