我想从

['$a', '$b', '$c', '$d', '$e']

to

['a', 'b', 'c', 'd', 'e']

当前回答

除了已经提供的解决方案之外,您还可以在读取文件时替换所有列。我们可以使用names和header=0来实现这一点。

首先,我们创建一个我们喜欢用作列名的名称列表:

import pandas as pd

ufo_cols = ['city', 'color reported', 'shape reported', 'state', 'time']
ufo.columns = ufo_cols

ufo = pd.read_csv('link to the file you are using', names = ufo_cols, header = 0)

在这种情况下,所有列名都将替换为列表中的名称。

其他回答

如“使用文本数据:

df.columns = df.columns.str.replace('$', '')

许多panda函数都有一个就地参数。当设置为True时,转换将直接应用于调用它的数据帧。例如:

df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df.rename(columns={'$a': 'a'}, inplace=True)
df.columns

>>> Index(['a', '$b'], dtype='object')

或者,在某些情况下,您希望保留原始数据帧。如果创建数据帧是一项昂贵的任务,我经常看到人们陷入这种情况。例如,如果创建数据帧需要查询雪花数据库。在这种情况下,只需确保将inplace参数设置为False。

df = pd.DataFrame({'$a':[1,2], '$b': [3,4]})
df2 = df.rename(columns={'$a': 'a'}, inplace=False)
df.columns

>>> Index(['$a', '$b'], dtype='object')

df2.columns

>>> Index(['a', '$b'], dtype='object')

如果这些类型的转换是您经常做的,那么您还可以研究一些不同的panda GUI工具。我是一个叫做水户的人的创造者。它是一个电子表格,可以自动将您的编辑转换为python代码。

请注意,前面答案中的方法不适用于MultiIndex。对于MultiIndex,您需要执行以下操作:

>>> df = pd.DataFrame({('$a','$x'):[1,2], ('$b','$y'): [3,4], ('e','f'):[5,6]})
>>> df
   $a $b  e
   $x $y  f
0  1  3  5
1  2  4  6
>>> rename = {('$a','$x'):('a','x'), ('$b','$y'):('b','y')}
>>> df.columns = pandas.MultiIndex.from_tuples([
        rename.get(item, item) for item in df.columns.tolist()])
>>> df
   a  b  e
   x  y  f
0  1  3  5
1  2  4  6

只需将其分配给.columns属性:

>>> df = pd.DataFrame({'$a':[1,2], '$b': [10,20]})
>>> df
   $a  $b
0   1  10
1   2  20

>>> df.columns = ['a', 'b']
>>> df
   a   b
0  1  10
1  2  20

一个简单而“有趣”(和蟒蛇?)的解决方案:

df.rename(columns={x: x.replace('$', '') for x in df.columns})

哪里:

df = pd.DataFrame(columns=['$a', '$b', '$c', '$d', '$e'])

步骤:

获取DataFrame的列作为列表:

df.columns

在DataFrames中重命名的方法:

df.rename()

属性以指定要重命名列:

columns={}

在字典中,您需要指定要重命名的列(在每个键中)以及它们将获得的新名称(每个值)

{'old_col_name': 'new_col_name', ...}

由于您的更改遵循一种模式,为了删除每列中的$字符,我们可以使用字典理解:

{x: x.replace('$', '') for x in df.columns}