我想从

['$a', '$b', '$c', '$d', '$e']

to

['a', 'b', 'c', 'd', 'e']

当前回答

如果已经有新列名的列表,可以尝试以下操作:

new_cols = ['a', 'b', 'c', 'd', 'e']
new_names_map = {df.columns[i]:new_cols[i] for i in range(len(new_cols))}

df.rename(new_names_map, axis=1, inplace=True)

其他回答

另一个选项是使用正则表达式重命名:

import pandas as pd
import re

df = pd.DataFrame({'$a':[1,2], '$b':[3,4], '$c':[5,6]})

df = df.rename(columns=lambda x: re.sub('\$','',x))
>>> df
   a  b  c
0  1  3  5
1  2  4  6

这真的很简单。只需使用:

df.columns = ['Name1', 'Name2', 'Name3'...]

它将按照您输入的顺序分配列名。

如“使用文本数据:

df.columns = df.columns.str.replace('$', '')
# This way it will work
import pandas as pd

# Define a dictionary 
rankings = {'test': ['a'],
        'odi': ['E'],
        't20': ['P']}

# Convert the dictionary into DataFrame
rankings_pd = pd.DataFrame(rankings)

# Before renaming the columns
print(rankings_pd)

rankings_pd.rename(columns = {'test':'TEST'}, inplace = True)

另一种替换原始列标签的方法是从原始列标签中删除不需要的字符(此处为“$”)。

这可以通过在df.columns上运行for循环并将剥离的列附加到df.column来完成。

相反,我们可以通过使用下面的列表理解在一个语句中巧妙地做到这一点:

df.columns = [col.strip('$') for col in df.columns]

(Python中的strip方法会从字符串的开头和结尾剥离给定的字符。)