如何将一个数除3而不使用*、/、+、-、%等运算符?

号码可以有签名,也可以没有签名。


当前回答

使用cblas,作为OS X加速框架的一部分。

[02:31:59] [william@relativity ~]$ cat div3.c
#import <stdio.h>
#import <Accelerate/Accelerate.h>

int main() {
    float multiplicand = 123456.0;
    float multiplier = 0.333333;
    printf("%f * %f == ", multiplicand, multiplier);
    cblas_sscal(1, multiplier, &multiplicand, 1);
    printf("%f\n", multiplicand);
}

[02:32:07] [william@relativity ~]$ clang div3.c -framework Accelerate -o div3 && ./div3
123456.000000 * 0.333333 == 41151.957031

其他回答

使用黑客的喜悦魔术数字计算器

int divideByThree(int num)
{
  return (fma(num, 1431655766, 0) >> 32);
}

其中fma是在math.h头文件中定义的标准库函数。

用Pascal编写程序并使用DIV操作符。

因为问题被标记为c,你可以在Pascal中编写一个函数,然后在c程序中调用它;这样做的方法是特定于系统的。

但是这里有一个在我的Ubuntu系统上运行的例子,安装了Free Pascal fp-编译器包。(我这么做完全是出于不合时宜的固执;我不敢说这是有用的。)

divide_by_3。不是:

unit Divide_By_3;
interface
    function div_by_3(n: integer): integer; cdecl; export;
implementation
    function div_by_3(n: integer): integer; cdecl;
    begin
        div_by_3 := n div 3;
    end;
end.

c:

#include <stdio.h>
#include <stdlib.h>

extern int div_by_3(int n);

int main(void) {
    int n;
    fputs("Enter a number: ", stdout);
    fflush(stdout);
    scanf("%d", &n);
    printf("%d / 3 = %d\n", n, div_by_3(n));
    return 0;
}

构建:

fpc divide_by_3.pas && gcc divide_by_3.o main.c -o main

示例执行:

$ ./main
Enter a number: 100
100 / 3 = 33

使用计数器是一个基本的解决方案:

int DivBy3(int num) {
    int result = 0;
    int counter = 0;
    while (1) {
        if (num == counter)       //Modulus 0
            return result;
        counter = abs(~counter);  //++counter

        if (num == counter)       //Modulus 1
            return result;
        counter = abs(~counter);  //++counter

        if (num == counter)       //Modulus 2
            return result;
        counter = abs(~counter);  //++counter

        result = abs(~result);    //++result
    }
}

也很容易执行一个模数函数,查看注释。

第一:

x/3 = (x/4) / (1-1/4)

然后求x/(1 - y)

x/(1-1/y)
  = x * (1+y) / (1-y^2)
  = x * (1+y) * (1+y^2) / (1-y^4)
  = ...
  = x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i)) / (1-y^(2^(i+i))
  = x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i))

y = 1/4:

int div3(int x) {
    x <<= 6;    // need more precise
    x += x>>2;  // x = x * (1+(1/2)^2)
    x += x>>4;  // x = x * (1+(1/2)^4)
    x += x>>8;  // x = x * (1+(1/2)^8)
    x += x>>16; // x = x * (1+(1/2)^16)
    return (x+1)>>8; // as (1-(1/2)^32) very near 1,
                     // we plus 1 instead of div (1-(1/2)^32)
}

虽然它使用了+,但有人已经实现了按位操作的add。

int div3(int x)
{
  int reminder = abs(x);
  int result = 0;
  while(reminder >= 3)
  {
     result++;

     reminder--;
     reminder--;
     reminder--;
  }
  return result;
}