如何将一个数除3而不使用*、/、+、-、%等运算符?

号码可以有签名,也可以没有签名。


当前回答

我会用这段代码除所有正数,非浮点数。基本上你要把除数位向左对齐以匹配被除数位。对于被除数的每一段(除数的大小),你想要检查是否被除数的每一段大于除数,然后你想要左Shift,然后在第一个注册器中OR。这个概念最初是在2004年创建的(我相信是斯坦福大学),这里是一个C版本,它使用了这个概念。注:(我做了一点修改)

int divide(int a, int b)
{
    int c = 0, r = 32, i = 32, p = a + 1;
    unsigned long int d = 0x80000000;

    while ((b & d) == 0)
    {
        d >>= 1;
        r--;
    }

    while (p > a)
    {
        c <<= 1;
        p = (b >> i--) & ((1 << r) - 1);
        if (p >= a)
            c |= 1;
    }
    return c; //p is remainder (for modulus)
}

使用示例:

int n = divide( 3, 6); //outputs 2

其他回答

第一:

x/3 = (x/4) / (1-1/4)

然后求x/(1 - y)

x/(1-1/y)
  = x * (1+y) / (1-y^2)
  = x * (1+y) * (1+y^2) / (1-y^4)
  = ...
  = x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i)) / (1-y^(2^(i+i))
  = x * (1+y) * (1+y^2) * (1+y^4) * ... * (1+y^(2^i))

y = 1/4:

int div3(int x) {
    x <<= 6;    // need more precise
    x += x>>2;  // x = x * (1+(1/2)^2)
    x += x>>4;  // x = x * (1+(1/2)^4)
    x += x>>8;  // x = x * (1+(1/2)^8)
    x += x>>16; // x = x * (1+(1/2)^16)
    return (x+1)>>8; // as (1-(1/2)^32) very near 1,
                     // we plus 1 instead of div (1-(1/2)^32)
}

虽然它使用了+,但有人已经实现了按位操作的add。

通过使用eval和字符串连接来在“幕后”使用/操作符是欺骗吗?

例如,在Javacript中,您可以这样做

function div3 (n) {
    var div = String.fromCharCode(47);
    return eval([n, div, 3].join(""));
}

这是一个执行所需操作的简单函数。但是它需要+操作符,所以你所要做的就是用位操作符来加值:

// replaces the + operator
int add(int x, int y)
{
    while (x) {
        int t = (x & y) << 1;
        y ^= x;
        x = t;
    }
    return y;
}

int divideby3(int num)
{
    int sum = 0;
    while (num > 3) {
        sum = add(num >> 2, sum);
        num = add(num >> 2, num & 3);
    }
    if (num == 3)
        sum = add(sum, 1);
    return sum; 
}

正如吉姆评论的那样,这是可行的,因为:

N = 4 * a + b N / 3 = a + (a + b) / 3 sum += an = a + b,然后迭代 当a == 0 (n < 4)时,sum += floor(n / 3);即1,如果n == 3,否则为0

很有趣的是,没有人回答一个泛泛的划分:

/* For the given integer find the position of MSB */
int find_msb_loc(unsigned int n)
{
    if (n == 0)
        return 0;

    int loc = sizeof(n)  * 8 - 1;
    while (!(n & (1 << loc)))
        loc--;
    return loc;
}


/* Assume both a and b to be positive, return a/b */
int divide_bitwise(const unsigned int a, const unsigned int b)
{
    int int_size = sizeof(unsigned int) * 8;
    int b_msb_loc = find_msb_loc(b);

    int d = 0; // dividend
    int r = 0; // reminder
    int t_a = a;
    int t_a_msb_loc = find_msb_loc(t_a);
    int t_b = b << (t_a_msb_loc - b_msb_loc);

    int i;
    for(i = t_a_msb_loc; i >= b_msb_loc; i--)  {
        if (t_a > t_b) {
            d = (d << 1) | 0x1;
            t_a -= t_b; // Not a bitwise operatiion
            t_b = t_b >> 1;
         }
        else if (t_a == t_b) {
            d = (d << 1) | 0x1;
            t_a = 0;
        }
        else { // t_a < t_b
            d = d << 1;
            t_b = t_b >> 1;
        }
    }

    r = t_a;
    printf("==> %d %d\n", d, r);
    return d;
}

按位加法已经在其中一个答案中给出,所以跳过它。

#include <stdio.h>

typedef struct { char a,b,c; } Triple;

unsigned long div3(Triple *v, char *r) {
  if ((long)v <= 2)  
    return (unsigned long)r;
  return div3(&v[-1], &r[1]);
}

int main() {
  unsigned long v = 21; 
  int r = div3((Triple*)v, 0); 
  printf("%ld / 3 = %d\n", v, r); 
  return 0;
}