如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
如何将一个数除3而不使用*、/、+、-、%等运算符?
号码可以有签名,也可以没有签名。
当前回答
你可以考虑用图或树状结构来解决这个问题。基本上生成的顶点数与要除以3的数一样多。然后继续将每个未配对的顶点与其他两个顶点配对。
粗糙的伪代码:
function divide(int num)
while(num!=0)
Add a new vertice to vertiexList.
num--
quotient = 0
for each in vertexList(lets call this vertex A)
if vertexList not empty
Add an edge between A and another vertex(say B)
else
your Remainder is 1 and Quotient is quotient
if vertexList not empty
Add an edge between A and another vertex(say C)
else
your remainder is 2 and Quotient is quotient
quotient++
remove A, B, C from vertexList
Remainder is 0 and Quotient is quotient
这显然是可以优化的,复杂度取决于你的数字有多大,但它应该工作,只要你能做++和——。 这就像数更酷的东西一样。
其他回答
这是一个执行所需操作的简单函数。但是它需要+操作符,所以你所要做的就是用位操作符来加值:
// replaces the + operator
int add(int x, int y)
{
while (x) {
int t = (x & y) << 1;
y ^= x;
x = t;
}
return y;
}
int divideby3(int num)
{
int sum = 0;
while (num > 3) {
sum = add(num >> 2, sum);
num = add(num >> 2, num & 3);
}
if (num == 3)
sum = add(sum, 1);
return sum;
}
正如吉姆评论的那样,这是可行的,因为:
N = 4 * a + b N / 3 = a + (a + b) / 3 sum += an = a + b,然后迭代 当a == 0 (n < 4)时,sum += floor(n / 3);即1,如果n == 3,否则为0
这是经典的2进制除法算法
#include <stdio.h>
#include <stdint.h>
int main()
{
uint32_t mod3[6] = { 0,1,2,0,1,2 };
uint32_t x = 1234567; // number to divide, and remainder at the end
uint32_t y = 0; // result
int bit = 31; // current bit
printf("X=%u X/3=%u\n",x,x/3); // the '/3' is for testing
while (bit>0)
{
printf("BIT=%d X=%u Y=%u\n",bit,x,y);
// decrement bit
int h = 1; while (1) { bit ^= h; if ( bit&h ) h <<= 1; else break; }
uint32_t r = x>>bit; // current remainder in 0..5
x ^= r<<bit; // remove R bits from X
if (r >= 3) y |= 1<<bit; // new output bit
x |= mod3[r]<<bit; // new remainder inserted in X
}
printf("Y=%u\n",y);
}
Yet another solution. This should handle all ints (including negative ints) except the min value of an int, which would need to be handled as a hard coded exception. This basically does division by subtraction but only using bit operators (shifts, xor, & and complement). For faster speed, it subtracts 3 * (decreasing powers of 2). In c#, it executes around 444 of these DivideBy3 calls per millisecond (2.2 seconds for 1,000,000 divides), so not horrendously slow, but no where near as fast as a simple x/3. By comparison, Coodey's nice solution is about 5 times faster than this one.
public static int DivideBy3(int a) {
bool negative = a < 0;
if (negative) a = Negate(a);
int result;
int sub = 3 << 29;
int threes = 1 << 29;
result = 0;
while (threes > 0) {
if (a >= sub) {
a = Add(a, Negate(sub));
result = Add(result, threes);
}
sub >>= 1;
threes >>= 1;
}
if (negative) result = Negate(result);
return result;
}
public static int Negate(int a) {
return Add(~a, 1);
}
public static int Add(int a, int b) {
int x = 0;
x = a ^ b;
while ((a & b) != 0) {
b = (a & b) << 1;
a = x;
x = a ^ b;
}
return x;
}
这是c#,因为这是我手边的东西,但与c的区别应该很小。
很好bc:
$ num=1337; printf "scale=5;${num}\x2F3;\n" | bc
445.66666
你可以考虑用图或树状结构来解决这个问题。基本上生成的顶点数与要除以3的数一样多。然后继续将每个未配对的顶点与其他两个顶点配对。
粗糙的伪代码:
function divide(int num)
while(num!=0)
Add a new vertice to vertiexList.
num--
quotient = 0
for each in vertexList(lets call this vertex A)
if vertexList not empty
Add an edge between A and another vertex(say B)
else
your Remainder is 1 and Quotient is quotient
if vertexList not empty
Add an edge between A and another vertex(say C)
else
your remainder is 2 and Quotient is quotient
quotient++
remove A, B, C from vertexList
Remainder is 0 and Quotient is quotient
这显然是可以优化的,复杂度取决于你的数字有多大,但它应该工作,只要你能做++和——。 这就像数更酷的东西一样。