如何将一个数除3而不使用*、/、+、-、%等运算符?

号码可以有签名,也可以没有签名。


当前回答

这应该适用于任何除数,而不仅仅是3。目前仅适用于unsigned,但将其扩展到signed应该没有那么困难。

#include <stdio.h>

unsigned sub(unsigned two, unsigned one);
unsigned bitdiv(unsigned top, unsigned bot);
unsigned sub(unsigned two, unsigned one)
{
unsigned bor;
bor = one;
do      {
        one = ~two & bor;
        two ^= bor;
        bor = one<<1;
        } while (one);
return two;
}

unsigned bitdiv(unsigned top, unsigned bot)
{
unsigned result, shift;

if (!bot || top < bot) return 0;

for(shift=1;top >= (bot<<=1); shift++) {;}
bot >>= 1;

for (result=0; shift--; bot >>= 1 ) {
        result <<=1;
        if (top >= bot) {
                top = sub(top,bot);
                result |= 1;
                }
        }
return result;
}

int main(void)
{
unsigned arg,val;

for (arg=2; arg < 40; arg++) {
        val = bitdiv(arg,3);
        printf("Arg=%u Val=%u\n", arg, val);
        }
return 0;
}

其他回答

3以2为底等于11。

所以只要做长除法(就像中学那样),以2 × 11为底。以2为底比以10为底更简单。

对于从最有效位开始的每个位位:

判断prefix是否小于11。

如果它是输出0。

如果不是输出1,则替换前缀位进行适当的更改。只有三种情况:

 11xxx ->    xxx    (ie 3 - 3 = 0)
100xxx ->   1xxx    (ie 4 - 3 = 1)
101xxx ->  10xxx    (ie 5 - 3 = 2)

所有其他前缀都不可达。

重复到最低位,你就完成了。

在PHP中使用BC数学:

<?php
    $a = 12345;
    $b = bcdiv($a, 3);   
?>

MySQL(来自Oracle的采访)

> SELECT 12345 DIV 3;

帕斯卡:

a:= 12345;
b:= a div 3;

X86-64汇编语言:

mov  r8, 3
xor  rdx, rdx   
mov  rax, 12345
idiv r8

使用itoa转换为以3为基数的字符串。去掉最后一个小调,转换回10进制。

// Note: itoa is non-standard but actual implementations
// don't seem to handle negative when base != 10.
int div3(int i) {
    char str[42];
    sprintf(str, "%d", INT_MIN); // Put minus sign at str[0]
    if (i>0)                     // Remove sign if positive
        str[0] = ' ';
    itoa(abs(i), &str[1], 3);    // Put ternary absolute value starting at str[1]
    str[strlen(&str[1])] = '\0'; // Drop last digit
    return strtol(str, NULL, 3); // Read back result
}

使用Linux shell脚本:

#include <stdio.h>
int main()
{
    int number = 30;
    char command[25];
    snprintf(command, 25, "echo $((%d %c 3)) ", number, 47);
    system( command );
    return 0;
}

请看我的另一个答案。

以下是我的解决方案:

public static int div_by_3(long a) {
    a <<= 30;
    for(int i = 2; i <= 32 ; i <<= 1) {
        a = add(a, a >> i);
    }
    return (int) (a >> 32);
}

public static long add(long a, long b) {
    long carry = (a & b) << 1;
    long sum = (a ^ b);
    return carry == 0 ? sum : add(carry, sum);
}

首先,请注意

1/3 = 1/4 + 1/16 + 1/64 + ...

现在,剩下的很简单!

a/3 = a * 1/3  
a/3 = a * (1/4 + 1/16 + 1/64 + ...)
a/3 = a/4 + a/16 + 1/64 + ...
a/3 = a >> 2 + a >> 4 + a >> 6 + ...

现在我们要做的就是把a的这些位移位值加在一起!哦!但是我们不能做加法,所以我们必须使用位操作符来编写一个加法函数!如果您熟悉逐位操作符,那么我的解决方案应该看起来相当简单……但以防你不懂,我会在最后讲一个例子。

另一件需要注意的事情是,首先我左移30!这是为了确保分数不会四舍五入。

11 + 6

1011 + 0110  
sum = 1011 ^ 0110 = 1101  
carry = (1011 & 0110) << 1 = 0010 << 1 = 0100  
Now you recurse!

1101 + 0100  
sum = 1101 ^ 0100 = 1001  
carry = (1101 & 0100) << 1 = 0100 << 1 = 1000  
Again!

1001 + 1000  
sum = 1001 ^ 1000 = 0001  
carry = (1001 & 1000) << 1 = 1000 << 1 = 10000  
One last time!

0001 + 10000
sum = 0001 ^ 10000 = 10001 = 17  
carry = (0001 & 10000) << 1 = 0

Done!

这就是你小时候学过的简单加法!

111
 1011
+0110
-----
10001

这个实现失败了,因为我们不能把方程的所有项相加:

a / 3 = a/4 + a/4^2 + a/4^3 + ... + a/4^i + ... = f(a, i) + a * 1/3 * 1/4^i
f(a, i) = a/4 + a/4^2 + ... + a/4^i

假设div_by_3(a) = x的结果,则x <= floor(f(a, i)) < a / 3。当a = 3k时,我们得到错误的答案。