如何将一个数除3而不使用*、/、+、-、%等运算符?

号码可以有签名,也可以没有签名。


当前回答

这是经典的2进制除法算法

#include <stdio.h>
#include <stdint.h>

int main()
{
  uint32_t mod3[6] = { 0,1,2,0,1,2 };
  uint32_t x = 1234567; // number to divide, and remainder at the end
  uint32_t y = 0; // result
  int bit = 31; // current bit
  printf("X=%u   X/3=%u\n",x,x/3); // the '/3' is for testing

  while (bit>0)
  {
    printf("BIT=%d  X=%u  Y=%u\n",bit,x,y);
    // decrement bit
    int h = 1; while (1) { bit ^= h; if ( bit&h ) h <<= 1; else break; }
    uint32_t r = x>>bit;  // current remainder in 0..5
    x ^= r<<bit;          // remove R bits from X
    if (r >= 3) y |= 1<<bit; // new output bit
    x |= mod3[r]<<bit;    // new remainder inserted in X
  }
  printf("Y=%u\n",y);
}

其他回答

int div3(int x)
{
  int reminder = abs(x);
  int result = 0;
  while(reminder >= 3)
  {
     result++;

     reminder--;
     reminder--;
     reminder--;
  }
  return result;
}

这是我小时候爷爷教我的一个方法。它需要+和/运算符,但计算起来很简单。

把每个数字相加,然后看看它是否是3的倍数。

但这种方法适用于大于12的数字。

例如:36岁,

3+6=9,是3的倍数。

42,

4+2=6,是3的倍数。

这是经典的2进制除法算法

#include <stdio.h>
#include <stdint.h>

int main()
{
  uint32_t mod3[6] = { 0,1,2,0,1,2 };
  uint32_t x = 1234567; // number to divide, and remainder at the end
  uint32_t y = 0; // result
  int bit = 31; // current bit
  printf("X=%u   X/3=%u\n",x,x/3); // the '/3' is for testing

  while (bit>0)
  {
    printf("BIT=%d  X=%u  Y=%u\n",bit,x,y);
    // decrement bit
    int h = 1; while (1) { bit ^= h; if ( bit&h ) h <<= 1; else break; }
    uint32_t r = x>>bit;  // current remainder in 0..5
    x ^= r<<bit;          // remove R bits from X
    if (r >= 3) y |= 1<<bit; // new output bit
    x |= mod3[r]<<bit;    // new remainder inserted in X
  }
  printf("Y=%u\n",y);
}

这是一个执行所需操作的简单函数。但是它需要+操作符,所以你所要做的就是用位操作符来加值:

// replaces the + operator
int add(int x, int y)
{
    while (x) {
        int t = (x & y) << 1;
        y ^= x;
        x = t;
    }
    return y;
}

int divideby3(int num)
{
    int sum = 0;
    while (num > 3) {
        sum = add(num >> 2, sum);
        num = add(num >> 2, num & 3);
    }
    if (num == 3)
        sum = add(sum, 1);
    return sum; 
}

正如吉姆评论的那样,这是可行的,因为:

N = 4 * a + b N / 3 = a + (a + b) / 3 sum += an = a + b,然后迭代 当a == 0 (n < 4)时,sum += floor(n / 3);即1,如果n == 3,否则为0

我会用这段代码除所有正数,非浮点数。基本上你要把除数位向左对齐以匹配被除数位。对于被除数的每一段(除数的大小),你想要检查是否被除数的每一段大于除数,然后你想要左Shift,然后在第一个注册器中OR。这个概念最初是在2004年创建的(我相信是斯坦福大学),这里是一个C版本,它使用了这个概念。注:(我做了一点修改)

int divide(int a, int b)
{
    int c = 0, r = 32, i = 32, p = a + 1;
    unsigned long int d = 0x80000000;

    while ((b & d) == 0)
    {
        d >>= 1;
        r--;
    }

    while (p > a)
    {
        c <<= 1;
        p = (b >> i--) & ((1 << r) - 1);
        if (p >= a)
            c |= 1;
    }
    return c; //p is remainder (for modulus)
}

使用示例:

int n = divide( 3, 6); //outputs 2